1 |
Surface Chemistry of C3H3 Groups on Ag(111) : Bond Dissociation, Formation and RearrangementKung, Hsuan 25 July 2007 (has links)
In organometallic chemistry, metal complexes bearing unsaturated hydrocarbon ligands are of extensive interest, especially the C3H3-M system which includes propargyl (HC¡ÝCCH2-M), allenyl (H2C=C=CH-M), and acetylide (H3CC¡ÝC-M) forms. To study the chemistry of these species on metal surfaces, we used proprargyl bromide (HC¡ÝCCH2-Br) as precursor to produce C3H3(ad) on Ag(111) under ultrahigh vacuum (UHV) conditions. The thermal reactions pathway was investigated by Temperature-Programmed Desorption (TPD), and Reflection-Absorption Infrared Spectroscopy (RAIRS). In addition, density functional theory (DFT) calculations were conducted to obtain the optimized geometry for the adsorbates, and the computed IR spectra facilitated the vibrational mode assignments. TPD spectra showed that hydrogenation products C3H4 evolved at 310 K and 475 K. However, the desorption peak at 310 K was broad, indicating that more than one species were encompassed. Besides the hydrogenation product, a coupling product C6H6 (2,4-hexadiyne) was also unveiled as part of the desorption feature at 475 K. The identity of the possible C3H4 hydrogenation products (propyne and/or allene) was not discriminable by the mass spectrometry. The problem was circumvented by using £\,£\-dimethyl-substituted propargyl chloride because this dimethyl-substituted species also resulted in hydrogenatioin products around 310 K and 475 K, respectively; and the corresponding allenic and acetylenic end-products are distinguishable by the mass spectrometry. The results indicated that the broad feature at 310 K, in fact, contained both allene (lower temperature) and propyne (higher temperature), whereas the hydrogenation product at 475 K was propyne. The RAIR spectrum at 200 K showed that all C3H3(ad) on Ag(111) readily took on the allenyl form after the C-Br bond scission. It is thus obvious that allene at 310 K was generated by adding one hydrogen to the £\-carbon of the surface allenyl. RAIR spectroscopy revealed a drastic change after annealing the surface to 250 K, where the spectrum was almost identical to that obtained from using propynyl iodide (H3C-C¡ÝC-I) as a direct source for methylacetylide (H3C-C¡ÝC-Ag). Consequently, the products of propyne and 2,4-hexadiyne could be reasoned out.
|
2 |
Surface Chemistry of Propargyl Radicals on Ag(111) : Thermal Reactivity and Surface BondingWang, Wei-Hua 01 August 2000 (has links)
none
|
3 |
Thermal Chemistry of Allyl Groups on the Ag(111) Surface: A Reactivity and Bonding StudyWang, Jung-Hui 16 July 2000 (has links)
Abstract
The reactivity and bonding of allyl groups (C3H5) on a Ag(111) surface have been investigated under ultrahigh vacuum conditions by temperature-programmed reaction/desorption (TPR/D) and reflection-adsorption infrared spectroscopy (RAIRS). The atomically clean surface was achieved by Ar+ sputtering and verified by AES. The surface crystallinity was assured by LEED. Surface -bound allyl groups were generated by dissociative adsorption of allyl halides. Our study shows that the C-X (X= I or Cl) bond can be ruptured below 200K to render adsorbed allyl species. Upon further heating, three gas-phase products were detected at ~280 K, 295 K and 320 K in the TPR/D spectra, which are attributed to 1,5-hexadiene, allene, and propene, respectively. These results suggest that allyl undergoes
|
4 |
Thermal Chemistry of 2-Propynyl Bromide and 1-Propynyl Iodide on the Ag(111) SurfaceWu, Yu-Jui 19 July 2001 (has links)
none
|
5 |
Atomic Manipulation and Tunneling Spectroscopy on Metal and Semiconductor SurfacesAcharya, Danda Pani January 2007 (has links)
No description available.
|
6 |
Vibrational properties of epitaxial silicene on Ag(111) / Die Schwingungseigenschaften von epitaktischen Silicen auf Ag(111)Solonenko, Dmytro Ihorovych 18 December 2017 (has links) (PDF)
This dissertation works out the vibrational properties of epitaxial silicene, which was discovered by Vogt et al. in 2012 by the epitaxial synthesis on the silver substrate. Its two-dimensional (2D) character is modified in comparison to the free-standing silicene due to its epitaxial nature, since the underlying substrate alters the physical properties of silicene as a result of the strong hybridization of the electronic levels of the substrate and adlayer. The growth of silicene layers is complicated by the sensitivity of the Si structures to the experimental conditions, mainly temperature, resulting in the formation of several seemingly different surface reconstructions. Another Si structure appears on the Ag surface at a supramonolayer coverage. The Raman spectroscopy was utilized to understand the relation between different Si structures and reveal their origin as well as to investigate the phonon-related physical properties of two-dimensional Si sheets.
The central core of this work is the growth and characterization of these 2D silicene monolayers on the Ag (111) surface as well as the formation of silicene multilayer structures. The characterization of these materials was performed using in situ surface-sensitive measurement methods such as Raman spectroscopy and low-energy electron diffraction under ultra-high vacuum conditions due to high chemical reactivity of epitaxial silicene. Additional characterization was done ex situ by means of scanning force microscopy. The experimentally determined spectral signature of the prototypical epitaxial (3x3)/(4x4) silicene structure was confirmed by ab initio calculations, in collaboration with theory groups. The Raman signatures of the other 2D and 3D Si phases on Ag (111) were determined which allowed us to provide a clear picture of their formation depending on the preparation conditions.
The monitoring of the silicene multi-layer growth yielded the vibrational signature of the top layer, reconstructed in a (√3x√3) fashion. It was compared to the inverse, (√3x√3)-Ag/Si(111), system showing the vast amount of similarities, which suggest that the (√3x√3) reconstruction belong to the silver layer. The chemical and physical properties of this surface structure additionally strengthen this equivalence.
The possibility of functionalization of epitaxial silicene was demonstrated via exposure to the atomic hydrogen under UHV conditions. The adsorbed hydrogen covalently bonds to the silicene lattice modifying it and reducing its symmetry. As shown by Raman spectroscopy, such modification can be reversed by thermal desorption of hydrogen. The excitation-dependent Raman measurements also suggest the change of the electronic properties of epitaxial silicene upon hydrogenation suggesting that its originally semi-metallic character is modified into a semiconducting one. / Die experimentellen Forschungsarbeiten zum Thema Silicen basieren auf den 2012 von Vogt et al. durchgeführten Untersuchungen zu dessen Synthese auf Silbersubstraten. Diese Untersuchungen lieferten die Grundlage, auf der zweidimensionales (2D) epitaktisches Silicen sowie weitere 2D Materialien untersucht werden konnten. In den anfänglichen Arbeiten konnte dabei gezeigt werden, dass sich die Eigenschaften von epitaktischem Silicen gegenüber den theoretischen Vorhersagen von frei-stehendem Silicen unterscheiden. Darüber hinaus verkomplizieren sich die experimentellen Untersuchungen dieses 2D Materials, da auf dem Ag(111) Wachstumssubstrat sechs verschiedene 2D Si Polytypen existieren. Eine detaillierte Darstellung dieser Untersuchungen findet sich in dem einführenden Kapitel der vorliegen Promotionsschrift. Der zentrale Kern dieser Arbeit beschäftigt sich mit dem Wachstum und der Charakterisierung dieser 2D Silicen Monolagen auf Ag(111) Oberflächen sowie der Bildung von Silicen- Multilagen Strukturen. Die Charakterisierung dieser Materialien wurde in situ mit oberflächenempfindlichen Messmethoden wie der Raman Spektroskopie und der niederenergetischen Elektronenbeugung unter Ultrahochvakuum-Bedingungen durchgeführt. Eine zusätzliche Charakterisierung erfolgte ex situ mittels Raster-KraftMikroskopie. Die experimentell bestimmte spektrale Raman-Signatur der prototypischen epitaktischen (3x3)/(4x4) Silicene Struktur wurde durch ab initio Rechnungen, in Zusammenarbeit mit Theoriegruppen, bestätigt. Durch diesen Vergleich wir die zweidimensionale Natur der epitaktischen Silicen-Schichten vollständig bestätigt, wodurch andere mögliche Interpretationen ausgeschlossen werden können. Darüber hinaus wurden die Ramans-Signaturen der weiteren 2D und 3D Siliziumphasen auf Ag(111) bestimmt, wodurch sich ein klares Bild der Bildung dieser Strukturen in Abhängigkeit von den Präparationsbedingungen ergibt. Um die Möglichkeit der Funktionalisierung von Silicen und der weiteren 2D Si Strukturen zu testen, wurden diese unter UHV Bedingungen atomarem Wasserstoff ausgesetzt. Durch die Bindung zu den Wasserstoffamen wird die kristalline Struktur der Silicen-Schichten modifiziert und die Symmetrie reduziert, was sich deutlich in der spektralen Raman-Signatur zeigt. Wie mittels Raman Spektroskopie gezeigt werden konnte, kann diese Modifikation durch thermische Desorption des Wasserstoffs rückgängig gemacht werden, ist also reversibel. Raman Messungen mit verschiedenen Anregungswellenlängen deuten darüber hinaus auf die Änderung der elektronischen Eigenschaften der Silicen-Schichten durch die Hydrierung hin. Der ursprüngliche halbmetallische Charakter der epitaktischen Silicen-Schicht geht möglicherweise in einen halbleitenden Zustand über. Das Wachstum von Silicen Multilagen wurde ebenfalls mit in situ Ramanspektroskopie verfolgt. Die sich dabei ergebene Raman-Signatur wurde mit der Raman-Signatur von Ag terminiertem Si(111) verglichen. Hier zeigen sich große Ähnlichkeiten, die auf eine ähnliche atomare Struktur hindeuten und zeigen, dass Ag Atome für die Ausbildung der Oberflächenstruktur während des Wachstums der Si-Lagen verantwortlich sind. Die chemischen und physikalischen Eigenschaften dieser Struktur bestärken zusätzlich diese Äquivalenz.
|
7 |
A Quantum Chemical Investigation of Chemical Vapour Deposition of Fe using Ferrocene and Plasma ElectronsAndersson, Felicia January 2023 (has links)
Thin films provide a remarkable asset, as depositing a thin surface layer can completely alter a material’s characteristics and provide new, inexpensive, and valuable properties. In 2020, a new Chemical Vapour Deposition (CVD) approach was developed at Linköping University, using plasma electrons as reducing agents for the deposition of metallic thin films. To understand the CVD approach, comprehension of the deposition chemistry is crucial. In this thesis, I have performed a theoretical examination of the gas phase and surface chemistry of ferrocene in the recently developed CVD method to form metallic iron thin films, using plasma electrons as reducing agents. Results show that ferrocene anion formation and dissociation are probable in the gas phase, depending on the energy of the plasma electrons. It gets successively easier to dissociate the complex after gaining electrons. The most probable gas phase species leading to film formation was determined as FeCp2-, FeCp, and Cp− under the normal deposition parameters. An electron energy above 220 kJ/mol would suffice for ion formation and dissociation to form FeCp and Cp− fragments. On the surface, ferrocene’s vertical and horizontal adsorption is equally probable, with energies around -72 kJ/mol. Cp, Fe, and FeCp with Fe facing towards the surface interacts stronger with the surface than ferrocene, with adsorption energies of -179, -279 kJ/mol, and -284 kJ/mol. FeCp with Fe facing up from the surface had adsorption energy of -23 kJ/mol. As the surface bonding of Fe and FeCp with Fe facing the surface is stronger than for the other species, this poses a possible way of tuning the CVD method to limit carbon impurities. By providing above 180 kJ/mol energy, for example in the form of heating the substrate, the unwanted species FeCp2, Cp, and FeCp with the ring facing downwards would desorb from the surface, leaving the Fe and FeCp fragments with iron facing towards the surface still adsorbed. This poses a possible way of reducing carbon impurities.
|
8 |
Low Temperature Scanning Tunneling Microscope for Single Atom ManipulationBabonis, Gregory S. 18 July 2003 (has links)
No description available.
|
9 |
Auto-assemblage et polymérisation 2D de molécules organiques en surfacePawlak, Rémy 03 December 2010 (has links) (PDF)
Ce travail présente la formation et la caractérisation sous ultravide de monocouches moléculaires issu de l'auto-assemblage et de la polymérisation de molécules organiques (hexahydroxy triphenyléne-HHTP et acide diborique benzoique-BDBA) sur des surfaces monocristallines métalliques et isolantes. L'adsorption de molécules HHTP sur Ag(111) donne lieu à plusieurs réseaux moléculaires dépendants de la température. Cette étude, menée par microscopie à effet tunnel (STM), montre qu'un réseau robuste est obtenu suite à la déshydrogénation, activée thermiquement, des groupes alcool périphériques. Cela induit la formation de liaisons hydrogène entre les fonctions alcools et cétones ainsi obtenues. L'étude STM de molécules de BDBA vapo-déposées sur Ag(111) a démontrée la formation d'architectures bidimensionnelles étendues, liées de manière covalente, suite à la polymérisation des précurseurs en surface. Un résultat similaire a pu être obtenu par la copolymérisation des molécules de BDBA et d'HHTP. Ces polymères nanoporeux s'étendent en monocouche et présentent une stabilité en température exceptionnelle. Enfin, l'étude de BDBA sur le substrat isolant de KCl, menée par microscopie à force atomique en mode non contact (nc-AFM), montre un auto-assemblage étendu par des liaisons hydrogène, et met en évidence le rôle décisif de la nature chimique du substrat sur la faisabilité de la polymérisation de ces molécules en surface. L'approche développée dans ce travail, mettant en jeu des réactions chimiques en surface, constitue une voie nouvelle pour la conception de nano-architectures moléculaires originales et robustes sur surfaces.
|
10 |
Carbon-Carbon Bond Forming Reactions of Metal-Bonded Hydrocarbon Groups on Ag(111): Steric, Electronic, and Carbon Hybridization Effects on the Coupling RatesLee, Long-chen 06 August 2006 (has links)
The alkyl substitution effects and the hybridization effects on the rate of coupling of adsorbed hydrocarbon groups on Ag(111) have been investigated under ultrahigh vacuum by temperature programmed reaction/desorption (TPR/D). For these two different issues, two types of halide precursors were used. One is to form adsorbed fragments bearing C£\(sp3) and C£\-H, the other is to yield adsorbed fragments with different hybridized £\-carbons without C£\-H. The desired hydrocarbon groups were generated on Ag(111) by the thermal dissociation of the C-X (X = I or Br) bond in the corresponding halogenated compounds. Substitution of alkyl for hydrogen in the adsorbed alkyl groups systematically raises the coupling temperature. For example, 3-pentyl groups homo-couple at temperatures ~ 70 K higher than the ethyl homo-coupling reaction. The concept of ¡§geminal repulsion¡¨ can account for our experimental results while the size and the number of the alkyl substitution groups increase. Different hybridized C£\ (metal-bonded carbon) species cause various angle strain energies in the cyclic transition state for the coupling reaction. The C£\(sp) species (CH3C¡ÝC(ad) and (CH3)3SiC¡ÝC(ad)) have rather high coupling temperatures (~ 460 K) due to the unidirectional sp orbital and the stronger Ag-C(sp) bond in the transition state. The relative rates for homo-coupling as a function of the hybridization of the metal-bound carbon follow the trend sp3 > sp2 > sp on the Ag(111) surface. Lastly, we found that the isobutyl groups undergo a £]-hydride elimination instead of homo-coupling on the Ag(111) surface. It may be due to that isobutyl groups have a total of nine £]-hydogens among all the hydrocarbon groups, which makes this rare reaction pathway possibly occur on Ag(111).
|
Page generated in 0.0305 seconds