Spelling suggestions: "subject:"canning tunneling microscopy."" "subject:"8canning tunneling microscopy.""
221 |
Effect of environment on the electronic and magnetic properties of transition metals and rare-earth complexes / Effet de l'environnement sur les propriétés électroniques et magnétiques de complexes de métaux de transition et de terres raresRouzhaji, Tuerhong 05 July 2017 (has links)
Cette thèse présente les résultats de mesures expérimentales effectués à basse température par les techniques de microscopie tunnel à balayage et de spectroscopie par tunnel à balayage (STS) sur les métaux de transitions phthalocyanines déposées sur les surfaces de métaux nobles. Les mesures STM/STS ont été effectuées pour les molécules MnPc et CuPc adsorbées sur les surfaces Ag (111) et Au (111) à la température expérimentale de travail de 4,5 K. Ces deux types de molécules présentent une différence substantielle de configurations d'adsorption, des comportements électroniques et magnétiques et des structures vibratoires moléculaire. Les études STM/STS ont principalement porté sur les propriétés magnétiques de ces molécules à travers l’effet Kondo et une attention particulière a été accordée à la molécule de MnPc en raison de son comportement magnétique plus intéressant issu de l'atome Mn central. Particulièrement, nous avons étudié l'évolution spectrale des structures électroniques et magnétiques du MnPc partant d'une molécule unique jusqu'à la structure bicouche ordonnée sur la surface Ag (111). En outre, les études STM/STS ont montré une preuve de couplage magnétique entre les moments magnétiques de l'atome de Co et de la molécule de MnPc ainsi que sa forte dépendance vis-à-vis du site d'adsorption de l'atome de Co. Ces études STM/STS sur ce système nous ont permis de comprendre l'effet des interactions molécule-substrat, molécule-molécule et molécules-atome sur les propriétés électroniques et magnétiques des molécules de MnPc. / This thesis presents the results of low-temperature scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) studies on transition-metal phthalocyanines molecules on the noble metal surfaces. The STM/STS measurements have been performed for MnPc and CuPc molecules adsorbed on Ag(111) and Au(111) surfaces at the experimental working temperature of 4.5 K. These two types of molecules exhibit substantially different adsorption configurations, the electronic and magnetic behaviors and the molecule vibrational structures. The STM/STS studies have focused mainly on the magnetic properties of these molecules by means of Kondo effect, and special attention has been paid to MnPc molecule due to its more interesting magnetic behavior arising from the central Mn atom. Particularly we investigated the spectral evolution of electronic and magnetic structures of MnPc starting from a single molecule up to the ordered bilayer structures on Ag(111) surface. In addition, the STM/STS investigations showed an evidence of magnetic coupling between the magnetic moments of the Co atom and MnPc molecule and its strong dependence on the adsorption site of Co atom. These STM/STS investigations on this system allowed us to understand the effect of molecule-substrate, molecule-molecule and molecule-atom interactions on the electronic and magnetic properties of MnPc molecules.
|
222 |
Influence des contraintes sur la reconstruction de l'Au (111) / Influence of stress on the Au(111) reconstructionChauraud, Dimitri 13 November 2019 (has links)
L’évolution de la reconstruction de surface de l’Au(111) sous contrainte-déformation a été étudiée dans le cadre d’une approche, à la fois expérimentale par microscopie à effet tunnel sous environnement ultra-vide couplée à un dispositif en compression, et numériquement par simulations en dynamique moléculaire. Dans un premier temps, nous avons étudié l’interaction entre les marches atomiques (vicinales ou traces de glissement) et la reconstruction. Nous avons notamment montré expérimentalement une forte dépendance de la longueur de la reconstruction avec la largeur des terrasses, en très bon accord avec les simulations atomistiques. Nous avons démontré de manière quantitative que ce comportement provenait de la relaxation des contraintes de surface, à la fois le long et perpendiculairement aux marches atomiques. Par la suite, nous avons montré que l’apparition d’une trace de glissement, résultant de l’émergence d’une dislocation à la surface, induit une réorganisation de la reconstruction, caractérisée par la formation d’un motif en forme de U. Nous avons par ailleurs observé expérimentalement la présence de décrochements le long de la trace. Les simulations ont confirmé que ces décrochements étaient corrélés avec la modification de la reconstruction. Dans un second temps, l’étude s’est axée sur l’évolution de la reconstruction en chevrons sous contrainte-déformation appliquée. Les observations expérimentales ont montré qu’une contrainte de compression macroscopique était à l’origine d’une modification de la structure en chevrons. Les simulations en dynamique moléculaire ont permis d’analyser l’influence de l’orientation de la contrainte sur les dislocations perçant la surface. Nous avons montré qu’une réorganisation irréversible de la structure en chevrons a lieu, se caractérisant par l’annihilation des dislocations perçant la surface et la suppression de la structure en chevrons. / The evolution of the surface reconstruction of the Au(111) under stress-strain has been studied in the context of an experimental approach, both by tunneling microscopy under ultra-vacuum environment coupled to a compression device, and numerically by molecular dynamics simulations. At first, we studied the interaction between atomic steps (vicinal or slip traces) and reconstruction. In particular, we showed experimentally a strong dependence of the length of the reconstruction with the width of the terraces, in very good agreement with the atomistic simulations. We have quantitatively demonstrated that this behavior is originated from the release of surface stress, both along and perpendicular to the atomic steps. Subsequently, we have shown that the appearance of a slip traces, resulting from the emergence of dislocations at the surface, induce a reorganization of the reconstruction, characterized by the formation of a U-shaped pattern. We also observed experimentally the presence of kinks along the trace. The simulations confirmed that these kinks are correlated with the modification of the reconstruction. At last, the study focused on the evolution of the chevron pattern under applied stress-strain. Experimental observations have shown that a macroscopic compressive strain involved a modification of the herringbone structure. Molecular dynamics simulations allowed to analyze the influence of stress orientation on surface threading dislocations. We have shown that an irreversible reorganisation of the herringbone structure takes place, characterized by the annihilation of the surface threading dislocations and the removal of the herringbone structure.
|
223 |
Engineering 2D organic nanoarchitectures on Au(111) by self-assembly and on-surface reactions / Elaboration de nanoarchitectures organiques bidimensionnelles par auto-assemblage et réactions sur surfacePeyrot, David 06 January 2017 (has links)
Ces dernières années ont été marquées par de grandes évolutions technologiques à travers notamment une course à la miniaturisation. De gros efforts de recherche se concentrent en particulier sur le domaine de l’électronique organique mais aussi sur de nouveaux matériaux bidimensionnels comme le graphène. Ces matériaux 2D présentent des propriétés physiques exceptionnelles et sont des candidats prometteurs pour le développement de futurs dispositifs électroniques. Au cours de cette thèse, l’approche ascendante, qui consiste à assembler ensemble des petites briques élémentaires, a été utilisée pour élaborer des nanostructures bidimensionnelles originales sur des surfaces. Des états électroniques localisés dus à un couplage électronique latéral particulier entre les molécules ont été observés. Quatre nanoarchitectures hybrides ioniques-organiques différentes ont été réalisées en faisant varier la température de la surface. Des nanostructures organiques covalentes ont aussi été élaborées par une réaction de couplage d’Ullmann sur la surface. Deux précurseurs différents en forme d’étoile avec des substituants iodés et bromés respectivement, ont été étudiés. De grandes nanostructures carbonées hexagonales poreuses ont notamment été synthétisées en faisant varier la température du substrat. Ces travaux ouvrent de nouvelles perspectives pour la réalisation de matériaux organiques bidimensionnels aux propriétés contrôlées. / Over the last few years, important technological developments were made following a trend towards miniaturization. In particular, lots of research efforts are put into the research on organic electronics and on 2D materials like graphene. Such 2D materials show great physical properties and are promising candidates for the development of future electronic devices.In this project, bottom-up approach consisting in assembling elementary building blocks together, was used to engineer novel twodimensional nanostructures on metal surfaces. The properties of these two-dimensional nanostructures were investigated using Scanning Tunneling Microscopy (STM) and X-ray Photoemission Spectroscopy (XPS). Two-dimensional nanostructures based on the self-assembly of organic building blocks stabilized by intermolecular interactions were engineered. In particular, nanostructures stabilized by hydrogen bonds, halogen bonds and ionic-organic interactions were investigated. Localized electronic states due to specific molecular lateral electronic coupling were observed. Four different ionic-organic nanoarchitectures were engineered varying the substrate temperature. Covalent organic nanostructures were also engineered by onsurface Ullmann coupling reaction. Two different star-shaped precursors with iodine and bromine substituents respectively, were investigated. Large periodic porous 2D covalent hexagonal carbon nanostructures weresuccessfully engineered by temperature driven hierarchal Ullmann coupling. These results open new perspectives for the development of 2D organic materials with controlled structures and properties.
|
224 |
Synchrotron X-ray Scanning Tunneling Microscopy Investigation of Interfacial Properties of Nanoscale MaterialsChang, Hao January 2018 (has links)
No description available.
|
225 |
Scanning Probe Microscopy Measurements and Simulations of Traps and Schottky Barrier Heights of Gallium Nitride and Gallium OxideGaliano, Kevin 07 October 2020 (has links)
No description available.
|
226 |
Manipulative Scanning Tunneling Microscopy and Molecular SpintronicsDiLullo, Andrew R. 10 June 2013 (has links)
No description available.
|
227 |
Growth and Scanning Tunneling Microscopy Studies of Magnetic Films on Semiconductors and Development of Molecular Beam Epitaxy/Pulsed Laser Deposition and Cryogenic Spin-Polarized Scanning Tunneling Microscopy SystemLin, Wenzhi 26 July 2011 (has links)
No description available.
|
228 |
Investigations on the Complex Rotations of Molecular NanomachinesKersell, Heath Ryan 03 October 2011 (has links)
No description available.
|
229 |
STM studies of charge transfer and transport through metal-molecule complexes on ultrathin insulating filmsChoi, Taeyoung 21 March 2011 (has links)
No description available.
|
230 |
The Formation of Two Dimensional Supramolecular Structures and Their Use in Studying Charge Transport at the Single Molecule Level at the Liquid-Solid InterfaceAfsari Mamaghani, Sepideh January 2015 (has links)
Understanding charge transport through molecular junctions and factors affecting the conductivity at the single molecule level is the first step in designing functional electronic devices using individual molecules. A variety of methods have been developed to fabricate metal-molecule-metal junctions in order to evaluate Single Molecule Conductance (SMC). Single molecule junctions usually are formed by wiring a molecule between two metal electrodes via anchoring groups that provide efficient electronic coupling and bind the organic molecular backbone to the metal electrodes. We demonstrated a novel strategy to fabricate single molecule junctions by employing the stabilization provided by the long range ordered structure of the molecules on the surface. The templates formed by the ordered molecular adlayer immobilize the molecule on the electrode surface and facilitate conductance measurements of single molecule junctions with controlled molecular orientation. This strategy enables the construction of orientation-controlled single molecule junctions, with molecules lacking proper anchoring groups that cannot be formed via conventional SMC methods. Utilizing Scanning Tunneling Microscopy (STM) imaging and STM break junction (STM-BJ) techniques combined, we employed the molecular assembly of mesitylene to create highly conductive molecular junctions with controlled orientation of benzene ring perpendicular to the STM tip as the electrode. The long range ordered structure of mesitylene molecules imaged using STM, supports the hypothesis that mesitylene is initially adsorbed on the Au(111) with the benzene ring lying flat on the surface and perpendicular to the Au tip. Thus, long range ordered structure of mesitylene facilitates formation of Au-π-Au junctions. Mesitylene molecules do not have standard anchoring groups providing enough contact to the gold electrode and the only assumable geometry for the molecules in the junction is via direct contact between Au and the π system of the benzene ring in mesitylene. SMC measurements for Au/mesitylene/Au junctions results in a molecular conductance value around 0.125Go, two orders of magnitude higher than the measured conductance of a benzene ring connected via anchoring groups. We attributed this conductance peak to charge transport perpendicular to the benzene ring due to direct coupling between the π system and the gold electrode that happens in planar orientation. The conductance we measured for planar orientation of benzene ring is two order of magnitude larger than conductance of junctions formed with benzene derivatives with conventional linkers. Thus, altering the orientation of a single benzene-containing molecule between the two electrodes from planar orientation to the upright attached via the linkers, results in altering the conductivity in a large order. Based on these findings, by utilizing STM imaging and STM-BJ in an electrochemical environment including potential induced self-assembly formation of terephthalic acid, we designed an electrochemical single molecule switch. Terephthalic acid forms large domains of ordered structure on negatively charged Au(111) surface under negative electrochemical surface potentials with the benzene ring lying flat on the surface due to hydrogen bonding between carboxylic acid groups of neighboring molecules. Formation of long range ordered structure facilitates direct contact between the π system of the benzene ring and the gold electrodes resulting in the conductance peak. On positively charged Au(111), deprotonation of carboxylic acid groups leads to absence of long range ordered structure of molecules with planar orientation and absence of the conductance peak. In this case alternating the surface (electrode) potential from negative to positive charge densities induces a transition in the adlayer structure on the surface and switches conductance value. Hence, electrochemical surface potential can, in principle, be employed as an external stimulus to switch single molecule arrangement on the surface and the conductance in the junction. The observation of conductance switching due to molecule’s arrangement in the junction lead to the hypothesis that for any benzene derivative, an orientation-dependent conductance in the junction due to the contact geometry (i.e. electrode-anchoring groups versus direct electrode-π contact) should be expected. Conventional techniques in fabricating single molecule junctions enable accessing charge transport along only one direction, i.e., between two anchoring groups. However, molecules such as benzene derivatives are anisotropic objects and we are able to measure an orientation-dependent conductance. In order to systematically study anisotropic conductivity at single molecule level, we need to measure the conductance in different and well-controlled orientations of single molecules in the junction. We employed the same EC-STM-BJ set up for SMC measurements and utilize electrochemical potential of the substrate (electrode) as the tuning source to variate the orientation of the single molecule in the junction. We investigated single molecule conductance of the benzene rings with carboxylic acid functional groups in two orientations: one with the benzene ring bridging between two electrodes using carboxylic acids as anchoring groups (upright); and one with the molecule lying flat on the substrate perpendicular to the STM tip (planar). Physisorption of these species on the Au (111) single crystal electrode surface at negative electrochemical potentials results in an ordered structure with the benzene ring in a planar orientation. Positive electrochemical potentials cause formation of the ordered structure with molecules standing upright due to coordination of a deprotonated carboxyl groups to the electrode surface. Thus, formation of the single molecule junction and consequently conductivity measurements is facilitated in two directions for the same molecule and anisotropic conductivity can be studied. In engineering well-ordered two-dimensional (2-D) molecular structures with controlled assembly of molecular species, pH can be employed as another tuning source for the molecular structures and adsorption in experiments conducted in aqueous solutions. Based on simple chemical principles, amine (NH2) groups are hydrogen bond acceptors and donors. Amines are soluble in water and protonation results in protonated (NH3+) and unprotonated (NH2) amine groups in acidic and moderately acidic/neutral solutions, respectively. Thus, amines are suitable molecular building blocks for fabricating 2-D supramolecular structures where pH is employed as a knob to manipulate intermolecular hydrogen bonding leading to phase transitions. We investigated pH induced structural changes in the 1,3,5–triaminobenzene (TAB) monolayer and the formation/disruption of hydrogen bonds between neighboring molecules. Our STM images indicate that in the concentrated acidic solution, the protonated amine groups of TAB are not able to form H-bonds and long range ordered structure of TAB does not form on the Au(111) surface. However, in moderately acidic solution (pH ~ 5.5) at room temperature, protonation on the ring carbon atom generates species capable of forming H-bonds leading to the formation of the long range ordered structures of TAB molecules. Utilizing EC-STM set up, we investigated the controllable fabrication of a TAB 2-D supramolecular structure based on amine-amine hydrogen bonding and effect of pH in formation of ordered/disordered TAB network. / Chemistry
|
Page generated in 0.121 seconds