Spelling suggestions: "subject:"schémas centrées"" "subject:"schémas centrée""
1 |
Construction de méthodes de volumes finis tridimensionnelles sans solveur de Riemann pour les systèmes hyperboliques non-linéairesSt-Cyr, Amik January 2002 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
2 |
Construction de méthodes de volumes finis tridimensionnelles sans solveur de Riemann pour les systèmes hyperboliques non-linéairesSt-Cyr, Amik January 2002 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur. / Dans cette thèse nous abordons la conception de nouveaux schémas de type volumes finis pour la résolution de systèmes hyperboliques non-linéaires pour la prédiction des écoulements compressibles instationnaires. Les nouveaux schémas présentés s'appuient tous sur les schémas proposés par Arminjon-Viallon et Arminjon-Stanescu-Viallon en 2 dimensions spatiales qui, eux, furent dérivés du schéma de Nessyahu-Tadmor en une dimension d'espace construit à partir du schéma décalé bien connu de Lax-Friedrichs. Ces schémas peuvent être considérés comme étant tous du type de Godunov et ont pour caractéristique principale d'éviter la résolution des problèmes de Riemann aux interfaces en utilisant 2 maillages différents pour, respectivement, les pas de temps pairs et impairs. Pour éviter la trop grande diffusion amenée par le schéma de Lax-Friedrichs, on a eu recours à l'utilisation d'une technique nommée MUSCL, originalement proposée par van Leer, consistant à reconstruire la solution constante par cellule en une solution linéaire par cellule tout en limitant les oscillations grâce à l'utilisation de fonctions non-linéaires. On obtient tout d'abord une extension en 3 dimensions spatiales sur des maillages cartésiens structurés. Ensuite, nous abordons le cas de maillages non-structurés composés de tétraèdres, et la formulation mathématique du schéma associé à ces cellules. Pour réduire les temps de calcul, un nouveau, schéma de type centré fondé sur celui de Nessyahu-Tadmor mais évitant l'utilisation d'un pas intermédiaire, et composé d'un nouveau flux est proposé en une et 2 dimensions spatiales pour des maillages structurés, puis en 3 dimensions sur des maillages non structurés composés de tétraèdres. Les résultats obtenus démontrent que les nouvelles méthodes sont moins sensibles aux maillages déformés et qu'elles sont plus simples à mettre en œuvre du fait que le problème de Riemann est évité et qu'aucune information sur la décomposition de la discontinuité en les différents champs caractéristiques du système n'est nécessaire.
|
3 |
Contribution à la modélisation numérique de la Fusion par Confinement InertielMaire, Pierre-Henri 03 February 2011 (has links) (PDF)
L'objet de ce travail est de présenter une partie des travaux entrepris au laboratoire CELIA (CEA, CNRS, Université Bordeaux I) dans le domaine de la modélisation numérique des écoulements fortement compressibles. Cette activité au sein de l'équipe Interaction-Fusion par Confinement Inertiel-Astrophysique, a eu pour objectif principal la mise au point et le développement de schémas numériques robustes dédiés à la simulation numérique des plasmas à haute densité d'énergie appliquée à la production d'énergie par fusion. Ces travaux se sont concrétisés par l'écriture du code CHIC (Code d'Hydrodynamique et d'Implosion du CELIA), logiciel permettant de concevoir et de restituer des expériences dans le domaine de la Fusion par Confinement Inertiel (FCI). Le modèle théorique numérique décrivant l'implosion d'une cible laser est un système d'équations aux dérivées partielles au centre duquel on trouve les équations d'Euler écrites dans le formalisme lagrangien, couplées à des équations de diffusion non linéaires modélisant le transport de l'énergie par les électrons et les photons. Dans cet exposé, après un bref rappel du contexte physique, nous décrirons les deux méthodes originales qui constituent l'ossature numérique du code CHIC. Il s'agit de deux schémas numériques d'ordre élevé du type volumes finis dédiés respectivement à la résolution des équations de l'hydrodynamique lagrangienne et à la résolution d'équations de diffusion anisotrope sur des maillages bi-dimensionnels non-structurés. Le premier schéma, dénommé EUCCLHYD (Explicit Unstructured Lagrangian HYDrodynamics), permet de résoudre les équations de la dynamique des gaz sur un maillage mobile qui se déplace à la vitesse du fluide. Il est obtenu à partir d'un formalisme général basé sur le concept de forces de sous-mailles. Dans ce cadre, les flux numériques sont exprimés en fonction des forces de sous-mailles et de la vitesse des noeuds. Leur détermination repose sur les trois principes fondamentaux suivants : compatibilité géométrique entre le mouvement des noeuds et la variation de volume des mailles (loi de conservation géométrique), compatibilité avec le second principe de la thermodynamique et conservation de l'énergie totale et de la quantité de mouvement. L'extension de ce schéma à l'ordre deux est mise en place à l'aide d'une méthode basée sur la résolution d'un problème de Riemann généralisé dans l'approximation acoustique. Le second schéma, appelé CCLAD (Cell-Centered LAgrangian Diffusion), concerne la résolution de l'équation de la chaleur anisotrope non-linéaire. La discrétisation correspondante s'appuye sur une formulation variationnelle locale au niveau des sous-mailles qui permet de construire une approximation multi-points du flux de chaleur. Cette discrétisation d'ordre élevé rend possible la résolution des équations de la diffusion anisotrope avec une précision satisfaisante sur des maillages lagrangiens fortement déformés. La précision et la robustesse de ces méthodes numériques sont démontrées sur des cas-tests représentatifs.
|
4 |
Développement d’un schéma aux volumes finis centré lagrangien pour la résolution 3D des équations de l’hydrodynamique et de l’hyperélasticité / Development of a 3D cell-centered Lagrangian scheme for the numerical modeling of the gas dynamics and hyperelasticity systemsGeorges, Gabriel 19 September 2016 (has links)
La Physique des Hautes Densités d’Énergies (HEDP) est caractérisée par desécoulements multi-matériaux fortement compressibles. Le domaine contenant l’écoulementsubit de grandes variations de taille et est le siège d’ondes de chocs et dedétente intenses. La représentation Lagrangienne est bien adaptée à la descriptionde ce type d’écoulements. Elle permet en effet une très bonne description deschocs ainsi qu’un suivit naturel des interfaces multi-matériaux et des surfaces libres.En particulier, les schémas Volumes Finis centrés Lagrangiens GLACE (GodunovtypeLAgrangian scheme Conservative for total Energy) et EUCCLHYD (ExplicitUnstructured Cell-Centered Lagrangian HYDrodynamics) ont prouvé leur efficacitépour la modélisation des équations de la dynamique des gaz ainsi que de l’élastoplasticité.Le travail de cette thèse s’inscrit dans la continuité des travaux de Maireet Nkonga [JCP, 2009] pour la modélisation de l’hydrodynamique et des travauxde Kluth et Després [JCP, 2010] pour l’hyperelasticité. Plus précisément, cettethèse propose le développement de méthodes robustes et précises pour l’extension3D du schéma EUCCLHYD avec une extension d’ordre deux basée sur les méthodesMUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) et GRP(Generalized Riemann Problem). Une attention particulière est portée sur la préservationdes symétries et la monotonie des solutions. La robustesse et la précision duschéma seront validées sur de nombreux cas tests Lagrangiens dont l’extension 3Dest particulièrement difficile. / High Energy Density Physics (HEDP) flows are multi-material flows characterizedby strong shock waves and large changes in the domain shape due to rarefactionwaves. Numerical schemes based on the Lagrangian formalism are good candidatesto model this kind of flows since the computational grid follows the fluid motion.This provides accurate results around the shocks as well as a natural tracking ofmulti-material interfaces and free-surfaces. In particular, cell-centered Finite VolumeLagrangian schemes such as GLACE (Godunov-type LAgrangian scheme Conservativefor total Energy) and EUCCLHYD (Explicit Unstructured Cell-CenteredLagrangian HYDrodynamics) provide good results on both the modeling of gas dynamicsand elastic-plastic equations. The work produced during this PhD thesisis in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrodynamicpart and the work of Kluth and Després [JCP, 2010] for the hyperelasticitypart. More precisely, the aim of this thesis is to develop robust and accurate methodsfor the 3D extension of the EUCCLHYD scheme with a second-order extensionbased on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws)and GRP (Generalized Riemann Problem) procedures. A particular care is taken onthe preservation of symmetries and the monotonicity of the solutions. The schemerobustness and accuracy are assessed on numerous Lagrangian test cases for whichthe 3D extensions are very challenging.
|
Page generated in 0.0668 seconds