• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 21
  • 3
  • 1
  • Tagged with
  • 51
  • 17
  • 17
  • 11
  • 11
  • 11
  • 11
  • 11
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Interplay of excitation transport and atomic motion in flexible Rydberg aggregates

Leonhardt, Karsten 24 November 2016 (has links) (PDF)
Strong resonant dipole-dipole interactions in flexible Rydberg aggregates enable the formation of excitons, many-body states which collectively share excitation between atoms. Exciting the most energetic exciton of a linear Rydberg chain whose outer two atoms on one end are closely spaced causes the initiation of an exciton pulse for which electronic excitation and diatomic proximity propagate directed through the chain. The emerging transport of excitation is largely adiabatic and is enabled by the interplay between atomic motion and dynamical variation of the exciton. Here, we demonstrate the coherent splitting of such pulses into two modes, which induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. The mechanism exploits local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The conical intersection is a consequence of the exciton pulses moving along a linear Rydberg chain and approaching an additional linear, perpendicularly aligned Rydberg chain. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. We demonstrate that this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains. Initially, we demonstrate the pulse splitting on planar aggregates with atomic motion one-dimensionally constrained and employing isotropic interactions. Subsequently, we confirm the splitting mechanism for a fully realistic scenario in which all spatial restrictions are removed and the full anisotropy of the dipole-dipole interactions is taken into account. Our results enable the experimental observation of non-adiabatic electronic dynamics and entanglement transport with Rydberg atoms. The conical intersection crossings are clearly evident, both in atomic mean position information and excited state spectra of the Rydberg system. This suggests flexible Rydberg aggregates as a test-bench for quantum chemical effects in experiments on much inflated length scales. The fundamental ideas discussed here have general implications for excitons on a dynamic network.
32

Macrocyclen mit Cycloheptatrieneinheiten

Neigenfink, Jan 04 February 1998 (has links)
Ziel der vorliegenden Arbeit ist die Erschließung eines neuen, synthetischen Zugangs zu linearen und makrocyclischen Systemen, die als Strukturelement eine Cycloheptatrieneinheit besitzen. Hierbei kann das Cycloheptatrien aufgrund seiner zahlreichen Transformationsmöglichkeiten als ein molekularer Schalter angesehen werden. Durch photochemische Reaktionen könnte auf diese Weise der Informationsgehalt supramolekularer Systeme verändert werden. Um eine verbesserte Photoschaltbarkeit zu gewähren, werden bisarylsubstituierte Cycloheptatriene benötigt. Verbrückte Aryltropyliumsalze werden durch Umsetzung mit Anilinderivaten in verbrückte Bisarylcycloheptatriene überführt. Die Makrocyclisierung mit verbrückten Carbonsäurechloriden führt, unter den Bedingungen des Verdünnungsprinzips, zu amidischen Ringverbindungen. / The object of the following thesis is the development of a new synthetic approach to linear or makrocyclic systems, which contain cycloheptatriene as a structural element. Cyclohepta-triene could be used as a molecular switch, due to the fact that there are several possible transformations. Using photochemical reactions there could be an easy change of order and involed information in supramolecular systems. Bisarylcycloheptatrienes enables the photo-active system to switch more easy. Bridged arylcycloheptatrienylium salts react with anilines to bridged bisarylcycloheptatrienes. Makrocyclisation under high dilution conditions with bridged chlorocarbonacids leads to cyclic systems containing the needed structural element.
33

Technologische Konzepte zur Herstellung von monolithischen bidirektionalen Schaltern (MBS) /

Baus, Matthias. January 2007 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2007.
34

Analysis and control of light-induced processes in molecules: Electron and nuclear quantum dynamics for aspects of stereoisomerism and spectroscopy

Kröner, Dominik (Dr. rer. nat.) January 2013 (has links)
The habilitation thesis covers theoretical investigations on light-induced processes in molecules. The study is focussed on changes of the molecular electronic structure and geometry, caused either by photoexcitation in the event of a spectroscopic analysis, or by a selective control with shaped laser pulses. The applied and developed methods are predominantly based on quantum chemistry as well as on electron and nuclear quantum dynamics, and in parts on molecular dynamics. The studied scientific problems deal with stereoisomerism and the question of how to either switch or distinguish chiral molecules using laser pulses, and with the essentials for the simulation of the spectroscopic response of biochromophores, in order to unravel their photophysics. The accomplished findings not only explain experimental results and extend existing approaches, but also contribute significantly to the basic understanding of the investigated light-driven molecular processes. The main achievements can be divided in three parts: First, a quantum theory for an enantio- and diastereoselective or, in general, stereoselective laser pulse control was developed and successfully applied to influence the chirality of molecular switches. The proposed axially chiral molecules possess different numbers of "switchable" stable chiral conformations, with one particular switch featuring even a true achiral "off"-state which allows to enantioselectively "turn on" its chirality. Furthermore, surface mounted chiral molecular switches with several well-defined orientations were treated, where a newly devised highly flexible stochastic pulse optimization technique provides high stereoselectivity and efficiency at the same time, even for coupled chirality-changing degrees of freedom. Despite the model character of these studies, the proposed types of chiral molecular switches and, all the more, the developed basic concepts are generally applicable to design laser pulse controlled catalysts for asymmetric synthesis, or to achieve selective changes in the chirality of liquid crystals or in chiroptical nanodevices, implementable in information processing or as data storage. Second, laser-driven electron wavepacket dynamics based on ab initio calculations, namely time-dependent configuration interaction, was extended by the explicit inclusion of magnetic field-magnetic dipole interactions for the simulation of the qualitative and quantitative distinction of enantiomers in mass spectrometry by means of circularly polarized ultrashort laser pulses. The developed approach not only allows to explain the origin of the experimentally observed influence of the pulse duration on the detected circular dichroism in the ion yield, but also to predict laser pulse parameters for an optimal distinction of enantiomers by ultrashort shaped laser pulses. Moreover, these investigations in combination with the previous ones provide a fundamental understanding of the relevance of electric and magnetic interactions between linearly or non-linearly polarized laser pulses and (pro-)chiral molecules for either control by enantioselective excitation or distinction by enantiospecific excitation. Third, for selected light-sensitive biological systems of central importance, like e.g. antenna complexes of photosynthesis, simulations of processes which take place during and after photoexcitation of their chromophores were performed, in order to explain experimental (spectroscopic) findings as well as to understand the underlying photophysical and photochemical principles. In particular, aspects of normal mode mixing due to geometrical changes upon photoexcitation and their impact on (time-dependent) vibronic and resonance Raman spectra, as well as on intramolecular energy redistribution were addressed. In order to explain unresolved experimental findings, a simulation program for the calculation of vibronic and resonance Raman spectra, accounting for changes in both vibrational frequencies and normal modes, was created based on a time-dependent formalism. In addition, the influence of the biochemical environment on the electronic structure of the chromophores was studied by electrostatic interactions and mechanical embedding using hybrid quantum-classical methods. Environmental effects were found to be of importance, in particular, for the excitonic coupling of chromophores in light-harvesting complex II. Although the simulations for such highly complex systems are still restricted by various approximations, the improved approaches and obtained results have proven to be important contributions for a better understanding of light-induced processes in biosystems which also adds to efforts of their artificial reproduction. / Die Habilitationsschrift behandelt theoretische Untersuchungen von durch Licht ausgelösten Prozessen in Molekülen. Der Schwerpunkt liegt dabei auf Veränderungen in der Elektronenstruktur und der Geometrie der Moleküle, die durch Bestrahlung mit Licht entweder bei einer spektroskopischen Untersuchung oder bei gezielter Kontrolle durch geformte Laserpulse herbeigeführt werden. Um die dabei auftretende Elektronen- und Kerndynamik zu simulieren, wurden vornehmlich quantentheoretische Methoden eingesetzt und weiterentwickelt. Die wissenschaftlichen Fragestellungen beschäftigen sich mit dem gezielten Verändern und dem Erkennen der räumlichen Struktur von Molekülen ohne Drehspiegelachse, der sog. molekularen Chiralität, sowie mit durch Licht eingeleiteten Prozessen in biologisch relevanten Pigmenten auf sehr kurzen Zeitskalen. Die entwickelten Ansätze und gewonnenen Erkenntnisse lassen sich drei Haupterfolge unterteilen: Erstens gelang die Entwicklung einer generellen Kontrolltheorie für das Ein- und Umschalten von molekularer Chiralität mit geformten Laserpulsen. Dabei wird die räumliche Struktur der vorgeschlagenen molekularen Schalter zwischen ihren stabilen sog. stereoisomeren Formen selektiv geändert, was sich auf ihre optischen und chemischen Eigenschaften auswirkt. Für komplexere Bedingungen, wie z.B. auf einer Oberfläche verankerten molekularen Schaltern verschiedener Orientierung, wurde eine neue Pulsoptimierungsmethode basierend auf Wahrscheinlichkeiten und Statistik entwickelt. Solche laserpulskontrollierten chiralen molekularen Schalter hofft man u.a. in der Nanotechnologie zum Einsatz zu bringen, wo sie z.B. als Informationsspeicher dienen könnten. Zweitens konnte geklärt werden, welche die wesentlichen Einflüsse sind, die das Erkennen von sog. Enantiomeren, das sind spiegelbildliche Moleküle von entgegengesetzter Chiralität, nach Ionisierung durch ultrakurze zirkular polarisierte Laserpulse ermöglichen. Diese Form des sog. Zirkulardichroismus in der Ionenausbeute erlaubt die quantitative und qualitative Unterscheidung von Enantiomeren in der Massenspektrometrie. Durch Simulation der Elektronendynamik während der Laseranregung konnte u.a. erstmals gezeigt werden, dass neben der Zirkularpolarisation der Laserpulse vor allem die schwachen magnetischen Wechselwirkungen für die Unterscheidung entscheidend sind. Drittens wurden die Spektren von in der Natur vorkommenden Pigmenten simuliert, welche u.a. an wichtigen biologischen Funktionen, wie dem Sammeln von Sonnenenergie für die Photosynthese, beteiligt sind. Die Lichtanregung führt dabei zu einer Veränderung der Elektronenstruktur und Geometrie der Pigmente, wobei letzteres wichtige Konsequenzen für die Verteilung der Energie auf die spektroskopisch beobachteten Molekülschwingungen mit sich bringen. Auch der wichtige Einfluss der biochemischen Umgebung auf die Elektronenstruktur der Pigmente bzw. den Energietransfer zwischen solchen wurde untersucht. Neben der Klärung experimenteller Ergebnisse ermöglichen die Untersuchungen neue Einblicke in die fundamentalen Prozesse kurz nach der Lichtanregung -- Erkenntnisse, die auch für die technische Nachahmung der biologischen Funktionen von Bedeutung sein können.
35

Modular Switches in Protein Function: A Spectroscopic Approach

Madathil, Sineej 08 December 2009 (has links)
Understanding the molecular basis of protein function is a challenging task that lays the foundation for the pharmacological intervention in many diseases originating in altered structural states of the involved proteins. Dissecting a complex functional machinery into modules is a promising approach to protein function. The motivation for this work was to identify minimal requirements for “local” switching processes in the function of multidomain proteins that can adopt a variety of structural substates of different biological activity or representing intermediates of a complex reaction path. For example, modular switches are involved in signal transduction, where receptors respond to ligand-activation by specific conformational changes that are allosterically transmitted to “effector recognition sites” distant from the actual ligand-binding site. Heptahelical receptors have attracted particular attention due to their ubiquitous role in a large variety of pharmacologically relevant processes. Although constituting switches in their own right, it has become clear through mutagenesis and functional studies that receptors exhibit substates of partial active/inactive structure that can explain biological phenotypes of different levels of activity. Here, the notion that microdomains undergo individual switching processes that are integrated in the overall response of structurally regulated proteins is addressed by studies on the molecular basis of proton-dependent (chemical) and force-dependent (mechanical) conformational transitions. A combination of peptide synthesis, biochemical analysis, and secondary structure sensitive spectroscopy (Infrared, Circular dichroism, Fluorescence) was used to prove the switching capability of putative functional modules derived from three selected proteins, in which conformational transitions determine their function in transmembrane signaling (rhodopsin), transmembrane transport (bacteriorhodopsin) and chemical force generation (kinesin-1). The data are then related to the phenotypes of the corresponding full length-systems. In the first two systems the chemical potential of protons is crucial in linking proton exchange reactions to transmembrane protein conformation. This work addresses the hypothesized involvement of lipid protein interactions in this linkage (1). It is shown here that the lipidic phase is a key player in coupling proton uptake at a highly conserved carboxylic acid (DRY motif located at the C-terminus of helix 3) to conformation during activation of class-1 G protein coupled receptors (GPCRs) independently from ligand protein interactions and interhelical contacts. The data rationalize how evolutionary diversity underlying ligand-specifity can be reconciled with the conservation of a cytosolic ‘proton switch’, that is adapted to the general physical constraints of a lipidic bilayer described here for the prototypical class-1 GPCR rhodopsin (2). Whereas the exact sequence of modular switching events is of minor importance for rhodopsin as long as the final overall active conformation is reached, the related heptahelical light-transducing proton pump bacteriorhodopsin (bR), requires the precise relative timing in coupling protonation events to conformationtional switching at the cytosolic, transmembrane, and extracellular domains to guarantee vectorial proton transport. This study has focused on the cytosolic proton uptake site of this retinal protein whose proton exchange reactions at the cytosolic halfchannel resemble that of rhodopsin. It was a prime task in this work to monitor in real time the allosteric coupling between different protein regions. A novel powerful method based on the correlation of simultaneously recorded infrared absorption and fluorescence emission changes during bR function was established here (3), to study the switching kinetics in the cytosolic proton uptake domain relative to internal proton transfer reactions at the retinal and its counter ion. Using an uptake-impaired bR mutant the data proves the modular nature of domain couplings and shows that the energy barrier of the conformational transition in the cytosolic half but not its detailed structure is under the control of proton transfer reactions at the retinal Schiff base and its counter ion Asp85 (4). Despite the different functions of the two studied retinal proteins, the protonation is coupled to local switching mechanisms studied here at two levels of complexity, [a] a single carboxylic acid side chain acting as a lipid-dependent proton switch [b] a full-length system, where concerted modular regions orchestrate the functional coupling of proton translocation reactions. Switching on the level of an individual amino acid is shown to rely on localizable chemical properties (charge state, hydrophobicity, rotamer state). In contrast, switching processes involving longer stretches of amino acids are less understood, less generalizable, and can constitute switches of mechanical, rather than chemical nature. This applies particularly to molecular motors, where local structural switching processes are directly involved in force generation. A controversy exists with respect to the structural requirements for the cooperation of many molecular motors attached to a single cargo. The mechanical properties of the Hinge 1 domain of kinesin-1 linking the “neck” and motor domain to the “tail” were addressed here to complement single molecule data on torsional flexibility with secondary structure analysis and thermal stability of peptides derived from Hinge 1 (5). It is shown that the Hinge 1 exhibits an unexpected helix-forming propensity that resists thermal forces but unfolds under load. The data resolve the paradox that the hinge is required for motor cooperation, whereas it is dispensable for single motor processivity, clearly emphasizing the modular function of the holoprotein. However, the secondary-structural data reveal the functional importance of providing high compliance by force-dependent unfolding, i.e. in a fundamentally different way than disordered domains that are flexible but yet do not support cooperativity.
36

Real-time studies of coupled molecular switches in photoresponsive materials

Weber, Christopher 16 December 2015 (has links)
Künstliche molekulare Schalter, wie beispielsweise Azobenzole, Diarylethene, Fulgide, Stilbene oder Spiropyrane wurden in den letzten Jahren intensiv erforscht, da sie zur Datenspeicherung, in selbstheilenden Materialien, molekularer Elektronik, Energiespeichern und mikromechanischen Anwendungen eingesetzt werden können. Eine der größten Herausforderungen im Forschungsfeld der molekularen Schalter ist die Frage, wie die Photoreaktion isolierter Moleküle in eine kontrollierte Photoreaktion wohldefinierter supramolekularer Systeme, wie z.B. organischer Dünnfilme oder 3D Nanostrukturen, übersetzt werden kann. Die Integration molekularer Schalter, beispielsweise von Azobenzolen, in supramolekulare Anordnungen kann zu emergenten Phänomenen wie kooperativem Schaltverhalten führen. Kooperatives Schalten bedeutet, dass die energetische Landschaft und daher auch die Isomerisationskinetik eines einzelnen molekularen Schalters von den isomerischen Zuständen benachbarter Schalter beeinflusst werden. Kooperatives Schaltverhalten, oder überhaupt Schaltbarkeit in geordneten Ensembles molekularer Schalter auf Oberflächen bewusst zu erzeugen hat sich allerdings aufgrund von sterischer Behinderung oder Delokalisierung angeregter Zustände als schwierig herausgestellt. Deshalb wäre ein besseres Verständnis der Voraussetzungen für Schaltbarkeit und kooperatives Verhalten molekularer Schalter in supramolekularen Systemen ein großer Schritt in Hinblick auf die Entwicklung von Bauelementen, die auf der gemeinsamen Bewegung molekularer Schalter basieren. Die in dieser Arbeit erzielten Resultate gewähren neue Einblicke in das Verhältnis zwischen der Photoisomerisierung einzelner Azobenzole und der Photoreaktion supramolekularer Systeme, was dabei helfen wird, neuartige und optimierte stimulireaktive Materialien zu entwickeln. / Synthetic molecular switches, such as azobenzenes, diarylethenes, fulgides, stilbenes or spiropyranes, have been intensively investigated in recent times because of their possible use in data storage, self-healing materials, molecular electronics, energy and information storage and optomechanics. One of the biggest challenges in the research field of molecular switches is the translation of the photoresponse of isolated molecules into a controlled photoresponse of well-defined supramolecular systems, such as organic thin films or functional nanostructures. The main focus of this thesis lies on the photoisomerization of multi-azobenzene compounds in different structural environments. Incorporation of molecular switches, for example azobenzene, into supramolecular assemblies can lead to emergent phenomena like cooperative switching behavior. Cooperative switching means that the energetic landscape and thus also the isomerization kinetics of a single molecular switch is influenced by the isomeric state of adjacent switches. However, it has proven difficult to establish cooperative switching behavior or even switching functionality at all in ordered ensembles of molecular switches on surfaces due to steric hindrance or delocalisation of excited states. Therefore, understanding the prerequisites for switching functionality and cooperative behavior of molecular switches in supramolecular assemblies is a crucial step towards the development of devices that make use of concerted motion of molecular switches. This thesis yields unprecedented insight into the relation between the photoisomerization of isolated azobenzenes and the photoresponse of supramolecular systems, which will ultimately help to build novel and optimized stimuli-responsive materials.
37

STM studies of ABP molecules - towards molecular latching for dangling-bond wire circuits

Nickel, Anja 14 December 2015 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es ein Molekül zu finden und mittels hochauflösender Techniken zu untersuchen, das auf passivierten Halbleiteroberflächen als Schalter in atomaren Schaltkreisen wirken kann. Für diesen Zweck stehen Moleküle zur Verfügung, die aus mindestens einem aromatischen Ring und einer Ankergruppe bestehen, die kovalent auf Silizium bindet. Um einzelne Moleküle auf leitenden Substraten zu untersuchen, hat sich die Nutzung eines Tieftemperatur-Rastertunnelmikroskops (low-temperature scanning tunneling microscope, LT-STM) als geeignetes Werkzeug erwiesen. Zum Einen ist damit die topographische und spektroskopische Charakterisierung von leitenden Proben auf atomarer Ebene möglich, zum Anderen können einzelne Moleküle und Nanostrukturen hochpräzise bewegt oder elektrisch angesprochen werden. Atomare Schaltkreise können besonders präzise auf passivierten Halbleiteroberflächen hergestellt werden. So ist es zum Beispiel möglich, eine Reihe Wasserstoffatome gezielt mit Hilfe einer STM-Spitze von der Oberfläche zu desorbieren. Durch die Überlappung der dann freien Orbitale entstehen, je nach Richtung auf der Oberfläche, atomare Drähte mit unterschiedlichen elektrischen Eigenschaften. Da die Drähte empfindlich hinsichtlich ihrer chemischen Umgebung sind, können diese auch als logische Schaltelemente verwendet werden. Dafür werden die Drähte mit einzelnen Molekülen angesteuert. Geeignete Schaltmoleküle wurden zunächst auf der Au(111)-Oberfläche getestet. Dabei konnten grundlegende und interessante Eigenschaften von selbst-assemblierten Strukturen untersucht werden. Am Modellsystem von nicht-kovalent gebundenen 4-Acetylbiphenyl-Nanostrukturen auf Gold (111) wurde eine neue Methode entwickelt diese Molekülgruppen behutsam zu bewegen. Durch Anlegen eines Spannungspulses auf den Nanostrukturen konnten diese auf der Oberfläche über weite Strecken gezielt und ohne Beeinflussung der internen Struktur positioniert werden. Um Moleküle für zukünftige elektronische Anwendungen zu untersuchen wurde zunächst das Verfahren zur Präparation von sauberen Siliziumoberflächen in die hier verwendeten Anlage implementiert. Es konnten reproduzierbar saubere, (2×1) rekonstruierte Si(100)- Oberflächen präpariert und charakterisiert werden. Nach der erfolgreichen Präparation von Silizium-Oberflächen und der Entwicklung geeigneter Präparationsrezepte für das Schalter-Molekül 4-Acetylbiphenyl (ABP) wurden beide Systeme vereint. Das Molekül konnte erfolgreich auf die Silizium(100)-Oberfläche aufgebracht und die native Adsorptionskonfiguration durch das Anlegen von Spannungspulsen geändert werden. Das Schalten zwischen zwei Konfigurationen ist reproduzierbar und umkehrbar. ABP ist somit der erste umkehrbare molekulare Schalter, der jemals auf Silizium realisiert werden konnte. Bei der Untersuchung technomimetischer Moleküle in Radachsen-Form konnte bisher die Rollbewegung nur anhand der Analyse der Manipulationskurven nachvollzogen und belegt werden. In dieser Arbeit wurde das Rollen eines Nano-Radmoleküls bewiesen. Dazu wurde bei der Synthese in einem Teil der Subphthalocyanin-Räder eine Markierung in Form eines Stickstoffatoms gesetzt. Bei der lateralen Manipulation der Räder auf Gold(111) konnte dann durch Vergleich der STM-Bilder die Markierung verfolgt und darauf geschlossen werden, ob das Rad gerollt oder verschoben wurde. / The aim of this thesis is the investigation of switching properties of single organic molecules, which can be used as molecular latches on a passivated silicon surface. Suitable molecules should be composed of an anchor group that can bind covalently to the silicon surface as well as an aromatic ring for the latching effect. For the imaging as well as the manipulation of single molecules on conductive substrates, a low-temperature scanning tunneling microscope, LT-STM, is a versatile and powerful tool. On the one hand, STM provides topographical and spectroscopic characterization of single molecules on conductive surfaces at the atomic level. On the other hand, under the tip of a STM single molecules and nanostructures can be moved with atomic precision or can be addressed by voltage pulses. Moreover, by STM it is possible to build atomic-scale circuits on passivated semiconducting surfaces as silicon (100). The STM tip is used to extract single hydrogen atoms from the surface to built atomic wires. As the orbitals of the depassivated dangling bonds of the silicon surface overlap differently depending on the direction of the wire in reference to the surface reconstruction, the electrical properties of the wires differ. Moreover, the properties of the wires vary depending on the chemical environment. Taking advantage of these characteristics, the atomic wires can be used as atomic-scale logic elements. However, to bring the input signal to a single logic element, latches are required to controllably passivate and depassivate single dangling-bond pairs. During preliminary studies on possible molecular latches, interesting experiments could be performed on 4-acetylbiphenyl (ABP) on Au(111). The molecules self assemble in non-covalently bond groups of three or four molecules. These groups can be moved controllably by applying voltage pulses on top of the supramolecular structure. The manipulation is possible over long ranges and without losing the internal structure of the assemblies. For the investigation of promising candidates for future molecular electronics on silicon, a preparation procedure tailored to the used UHV machine was developed. During this process, clean (2×1) reconstructed Si(100) surfaces could be prepared reproducibly and were characterized by means of STM imaging and spectroscopy. Switches are essential for electronic circuitry, on macroscopic as well as microscopic level. For the implementation of molecular devices on silicon, ABP is a promising candidate for a latch. In this thesis, ABP was successfully deposited on Si(100) and was switched by applying voltage pulses on top of the molecule. Two stable conformations were found and switching was realized reproducibly and reversibly. In the last part of this work, the rolling of a double-wheel technomimetic molecule was demonstrated. This thesis shows the rolling of a nanowheel on Au(111) as opposed to pushing, pulling or sliding. For this, the subphthalocyanine wheels were tagged by nitrogen during their synthesis. As this tag has different electronic properties than the rest of the wheel, it can be monitored in the STM images. By comparing the images before and after the manipulation the position of the tag proves the actual rolling.
38

Untersuchung der Spezifität von Antiterminationsproteinen in Bacillus subtilis / Analysis of the specificity of antiterminator proteins in Bacillus subtilis

Hübner, Sebastian 28 October 2008 (has links)
No description available.
39

Fluorescent and Photochromic Fluorescent Compounds for Applications in Optical Nanoscopy / Fluoreszierende und Photochrome Fluoreszierende Verbindungen zur Anwendung in der Optischen Nanoskopie

Polyakova, Svetlana 20 October 2009 (has links)
No description available.
40

A wired-AND transistor: Polarity controllable FET with multiple inputs

Simon, M., Trommer, J., Liang, B., Fischer, D., Baldauf, T., Khan, M. B., Heinzig, A., Knaut, M., Georgiev, Y. M., Erbe, A., Bartha, J. W., Mikolajick, T., Weber, W. M. 29 November 2021 (has links)
Reconfigurable field effect transistors (RFET) have the ability to toggle polarity between n- and p- conductance at runtime [1], [2]. The here presented multiple independent gate (MIG) RFET expands the device functionality by offering additional logical inputs, valuable for e.g. efficient XOR or majority gate implementations [3], [4] or the here originally presented multiplexer circuit. Moreover,https://inspec.iet.org/ideas/#controlled-terms for the first time with a top-down RFET approach equal ON-currents are obtained for every configuration while requiring only one supply voltage (VDD).

Page generated in 0.0683 seconds