Spelling suggestions: "subject:"schroedinger operator"" "subject:"schroedinger operator""
1 |
Improved Spectral Calculations for Discrete Schroedinger OperatorsPuelz, Charles 16 September 2013 (has links)
This work details an O(n^2) algorithm for computing the spectra of discrete Schroedinger
operators with periodic potentials. Spectra of these objects enhance our understanding of fundamental aperiodic physical systems and contain rich theoretical structure
of interest to the mathematical community. Previous work on the Harper model led
to an O(n^2) algorithm relying on properties not satisfied by other aperiodic operators. Physicists working with the Fibonacci Hamiltonian, a popular quasicrystal
model, have instead used a problematic dynamical map approach or a sluggish O(n^3)
procedure for their calculations. The algorithm presented in this work, a blend of well-established eigenvalue/vector algorithms, provides researchers with a more robust computational tool of general utility. Application to the Fibonacci Hamiltonian
in the sparsely studied intermediate coupling regime reveals structure in canonical
coverings of the spectrum that will prove useful in motivating conjectures regarding
band combinatorics and fractal dimensions.
|
2 |
Semiclassical methods for the two-dimensional Schrödiger operator with a strong magnetic fieldPankrachkine, Konstantin 09 December 2002 (has links)
Es werden spektrale Eigenschaften des zweidimensionalen Schrödinger-Operators mit einem zweifach periodischen Potential und starkem magnetischem Feld untersucht mit Hilfe semiklassischer Methoden. Man beschreibt die spektrale Asymptotik durch Benutzung der Reeb-Graph-Technik. Im Falle des rationalen Flusses konstruiert man semiklassische Magneto-Bloch-Funktionen und beschreibt die Asymptotik des Spektrums auf dem physikalischen Beweisniveau. / Spectral properties of the two-dimensional Schroedinger operator with a two-periodic potential and a strong uniform magnetic field is studied with the help of semiclassical methods. The spectral asymptotics is described using the Reeb graph technique. In the case of the rational flux one constructs semiclassical magneto-Bloch functions and describes the asymptotics of the band spectrum on the physical level of proof.
|
Page generated in 0.0977 seconds