• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy

Thomas, Lars, Kahr, Julian, Schmidt, Peter, Krug, Ulrike, Scheidt, Holger A., Huster, Daniel 08 January 2016 (has links) (PDF)
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptors’ function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize its dynamics. Qualitative static 15N NMR spectra and quantitative determination of 1H-13C order parameters through measurement of the 1H-13C dipolar couplings of the CH, CH2 and CH3 groups revealed axially symmetric motions of the whole molecule in the membrane and molecular fluctuations of varying amplitude from all molecular segments. The molecular order parameters (Sbackbone = 0.59-0.67, SCH2 = 0.41-0.51 and SCH3 = 0.22) obtained in directly polarized 13C NMR experiments demonstrate that the Y2 receptor is highly mobile in the native-like membrane. Interestingly, according to these results the receptor was found to be slightly more rigid in the membranes formed by the monounsaturated phospholipids than by saturated phospholipids as investigated previously. This could be caused by an increased chain length of the monounsaturated lipids, which may result in a higher helical content of the receptor. Furthermore, the incorporation of cholesterol, phosphatidylethanolamine, or negatively charged phosphatidylserine into the membrane did not have a significant influence on the molecular mobility of the Y2 receptor.
2

The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy

Thomas, Lars, Kahr, Julian, Schmidt, Peter, Krug, Ulrike, Scheidt, Holger A., Huster, Daniel January 2015 (has links)
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptors’ function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize its dynamics. Qualitative static 15N NMR spectra and quantitative determination of 1H-13C order parameters through measurement of the 1H-13C dipolar couplings of the CH, CH2 and CH3 groups revealed axially symmetric motions of the whole molecule in the membrane and molecular fluctuations of varying amplitude from all molecular segments. The molecular order parameters (Sbackbone = 0.59-0.67, SCH2 = 0.41-0.51 and SCH3 = 0.22) obtained in directly polarized 13C NMR experiments demonstrate that the Y2 receptor is highly mobile in the native-like membrane. Interestingly, according to these results the receptor was found to be slightly more rigid in the membranes formed by the monounsaturated phospholipids than by saturated phospholipids as investigated previously. This could be caused by an increased chain length of the monounsaturated lipids, which may result in a higher helical content of the receptor. Furthermore, the incorporation of cholesterol, phosphatidylethanolamine, or negatively charged phosphatidylserine into the membrane did not have a significant influence on the molecular mobility of the Y2 receptor.
3

The effects of hourly variation in exposure to cyclists and motorized vehicles on cyclist safety in a Dutch cycling capital

Uljtdewilllgen, Teun, Ulak, Mehmet Baran, Wijhuizen, Gert Jan, Bijleveld, Frits, Dijkstra, Atze, Geurs, Karst T. 19 December 2022 (has links)
While cycling is promoted as a sustainable and healthy mode of transport in many eitles in the Global North [1, 2], there are increasing concerns about the safety of cyclists. The increasing bicycle use in urban areas leads to a more intensely used cycling network, resulting in safety risks for cyclists [3]. Since 2010, the number of bicycle fatalities stagnated and the number of severely injured cyclists increased by 28% until 2018 in the European Union [4]. lt is therefore necessary to examine how bicycle use and motorized vehicle use in cities affects the nunber of bicycle crashes. To investigate this, the effect of the network-wide hourly exposure to cyclists and motorized vehicles on bicycle crash frequency is examined. That is, the total number of cyclists and motorized vehicles in the whole road network for each hour of the week were estimated and used as the network-wide hourly exposure. This approach allowed us to capture safety impacts of temporal variation in the numbers of cyclists and motorized vehicles in the same network more accurately. lt is a different approach compared to most bicycle safety studies, which often only use the daily average of bicycle and motorized vehicle volumes. The work presented here is based on our publication in Safety Science [5].
4

Hydraulic Investigations of the Salar de Uyuni, Bolivia

Sieland, Robert 26 January 2015 (has links) (PDF)
With a surface area of about 10,000 km², the Salar de Uyuni is the largest salt flat in the world. It is located at an altitude of 3,653 m on the Altiplano, a high plateau in the south of the Bolivian Andes. The Salar de Uyuni consists of an alternating sequence of highly porous salt layers (mainly composed of halite) and lacustrine clay sediments. The pore volume of the uppermost salt layer which has a thickness of up to 11 m is filled by brine. The brine contains high amounts of Mg, K, Li and B. The element lithium is an especially important raw material for the production of batteries. Thus, it plays an important role for the development of the electric mobility. With this background, extensive hydrogeological exploration activities were carried out at the Salar de Uyuni in the context of this dissertation. The hydraulic properties of the uppermost salt crust and the physical properties (density and viscosity) of the brine must be characterized. In order to do this, several core drillings were made, observation wells were installed, brine samples were taken and pumping tests were conducted between 2009 and 2012. The stratigraphic documentation of the obtained sediment cores provided insights about the deposit structure and the upper salt layer thickness. The determination of the salt core porosity was carried out by three different methods: (a) by using X-ray computed tomography, (b) gravimetrically by saturation with 2-octanol and (c) by completion of the core volume with plasticine and calculation of the porosity under consideration of the particle density of the salt. The laboratory investigations showed a depth-dependent porosity distribution in the upper salt layer. The uppermost 2 m were characterized by very high porosity values between 30 and 39%. However at greater depth, the total porosity decreases on average to 13.5%. Geochemical analyses of brine samples confirmed the general spatial distribution of the lithium concentrations as already published by previous studies. On the basis of the lithium distribution in the brine, the thickness of the upper salt layer and the depth-dependent porosity distribution, the total lithium deposit in the Salar de Uyuni was calculated to be about 7 million tons. The evaluation of the pumping tests under consideration of the density and viscosity of the pumped brine showed that the salt has a very high permeability in the horizontal direction. In contrast, flow-through experiments on drill cores indicated a clear vertical anisotropy of the permeability. This is caused by the inhomogeneous sediment stratification for instance by interbedded fine gypsum or clay lamina. Thus, horizontal brine movements are possible, but a deep vertical flow component can hardly be expected. This assumption is confirmed by radiocarbon dating the brine samples from different salt depths. The influence of annual floods during the rainy season could be observed by long-term brine level measurements. Throughout the time-series analysis, distinct periodic brine fluctuations of a few centimeters per day could be identified during the dry season. These daily fluctuations indicated an impermeable crust probably formed by the evaporation of near-surface brine and subsequent crystallization of salts in the pore volume. Thus, daily temperature and atmospheric pressure changes could directly affect the brine level. Due to the extensive hydrogeological investigations, this dissertation contributes to the essential understanding of the hydraulic conditions in the Salar de Uyuni. / Mit einer Fläche von rund 10.000 km² ist der Salar de Uyuni die größte Salz-Ton-Ebene der Welt. Er befindet sich in einer Höhe von 3653 m NN im Altiplano, einer Hochebene im Süden der bolivianischen Anden. Der Salar de Uyuni besteht aus einer Wechsellagerung von hochporösen Salzschichten (überwiegend aus Halit bestehend) und lakustrinen Tonsedimenten. Die Porenräume der obersten bis zu 11 m mächtigen Salzschicht sind mit einer Sole gefüllt, die hohe Gehalte an Mg, K, Li und B aufweist. Insbesondere das Element Lithium ist ein wichtiger Rohstoff u.a. für die Herstellung von Batterien und spielt damit eine bedeutende Rolle bei der Entwicklung der Elektromobilität. Vor diesem Hintergrund wurden im Rahmen der vorliegenden Dissertation umfassende hydrogeologische Erkundungsarbeiten am Salar de Uyuni durchgeführt, um die hydraulischen Eigenschaften der obersten Salzkruste sowie die physikalischen Eigenschaften (Dichte und Viskosität) der Sole zu charakterisieren. Dazu wurden zwischen 2009 und 2012 zahlreiche Kernbohrungen abgeteuft, Beobachtungsbrunnen installiert, Soleproben entnommen und Pumpversuche durchgeführt. Die stratigraphische Dokumentation der gewonnenen Bohrkerne lieferte Erkenntnisse zur Ablagerungsstruktur und zur Mächtigkeitsverteilung der obersten Salzschicht. Die Bestimmung der Porosität der Salzkerne erfolgte mit drei verschiedenen Methoden: (a) mittels Computertomographie, (b) gravimetrisch durch Aufsättigung mit 2-Oktanol und (c) durch Volumenergänzung der Kernproben mit Plastilin und Berechnung der Porosität unter Einbeziehung der Reindichte des Salzes. Die Laboruntersuchungen zeigten eine tiefenabhängige Porositätsverteilung in der obersten Salzschicht. Während die obersten 2 m durch sehr hohe Porositäten zwischen 30 und 39% gekennzeichnet sind, nimmt die Gesamtporosität in größerer Tiefe auf durchschnittlich 13.5% ab. Geochemische Analysen von Soleproben bestätigten die grundsätzliche räumliche Verteilung der Lithium-Konzentrationen, wie sie bereits durch frühere Studien veröffentlicht wurde. Auf Basis der Lithium-Verteilung in der Sole, der Mächtigkeit der oberen Salzschicht sowie der tiefenabhängigen Porositätsverteilung wurde ein Lithium-Vorkommen im Salar de Uyuni von rund 7 Millionen Tonnen berechnet. Die Auswertung der Pumpversuche unter Berücksichtigung der Dichte und Viskosität der geförderten Sole zeigte, dass das Salz eine sehr hohe Permeabilität in horizontaler Richtung aufweist. Allerdings zeigten Durchströmungsversuche an Bohrkernen eine deutliche vertikale Anisotropie der Permeabilität, was auf die inhomogene Sedimentschichtung durch z.B. eingeschaltete feine Gips- oder Tonschichten zurückzuführen ist. Somit sind zwar horizontale Solebewegungen möglich, jedoch ist kaum mit einer tiefgreifenden vertikalen Strömungskomponente in der Salzschicht zu rechnen. Diese Vermutung wird durch 14C-Altersdatierungen von Soleproben aus unterschiedlichen Tiefen des Salzes bestätigt. Der Einfluss der jährlichen Überschwemmungen während der Regenzeit konnte anhand von Langzeitmessungen des Solespiegels beobachtet werden. Im Zuge der Zeitreihen-Analyse zeigten sich zudem ausgeprägte periodische Tageschwankungen von einigen Zentimetern während der Trockenzeit. Diese deuten darauf hin, dass durch Verdunstung oberflächennaher Sole und damit einhergehender Kristallisation von Salzen im Porenraum eine undurchlässige Kruste entsteht. Dadurch haben tägliche Temperatur- und Luftdruckschwankungen direkten Einfluss auf den Solespiegel. Die vorliegende Dissertation trägt aufgrund der umfangreichen hydrogeologischen Untersuchungen wesentlich zum Verständnis der hydraulischen Verhältnisse im Salar de Uyuni bei. / Con una superficie de aproximadamente 10.000 kilómetros cuadrados el Salar de Uyuni es el mayor lago de sal en el mundo. Se encuentra a una altura de 3.653 m sobre el nivel del mar en el altiplano en el sur de los Andes bolivianos. El Salar de Uyuni consiste en una alternancia de capas de sal altamente porosa (que consiste predominantemente de halita) y lacustre sedimentos de arcilla. La capa superior de sal tiene un espesor de hasta 11 metros. Los espacios de poros del sal se llenan con una salmuera que contiene altos contenidos de Mg, K, Li y B. En particular, el elemento litio constituye una importante materia prima para la producción de baterías que son utilizadas en la construcción de vehículos eléctricos. Bajo estos antecedentes y en el contexto de la presente tesis, se han desarrollado extensas actividades de exploración hidrogeológica en el Salar de Uyuni. Las propiedades hidráulicas de la corteza de sal superior y las propiedades físicas (densidad y viscosidad) de la salmuera debían caracterizadas. Para ello, entre 2009 y 2012 se realizaron varios perforaciones con la finalidad de obtener muestras de núcleos, se instalaron pozos de supervisión, se realizaron pruebas de bombeo y se tomaron muestras de salmuera. La documentación estratigráfica de los núcleos de perforacíon proporciona conocimientos para la estructura de los depósitos y para el espesor del superior capa de sal. La porosidad de los núcleos de sal fue determinada por medio de tres métodos diferentes: (a) por tomografía computarizada (TC), (b) gravimétricamente mediante la saturación con 2-octanol y (c) mediante de compleción del volumen del núcleo con plastilina y computacíon de la porosidad en atención a la densidad real del sal. Las investigaciones de laboratorio demostraron una distribución de la porosidad dependiente de la profundidad en la capa superior de sal. Mientras que la parte superior 2 m se caracterizan por altas porosidades entre el 30 y 39%, la porosidad total decrese en una profundidad mayor a un promedio de 13,5%. Los análisis geoquímicos de muestras de salmuera confirmaron la distribución espacial fundamental de las concentraciones de litio, como ya se ha publicado por estudios anteriores. A base de la distribución de litio en la salmuera, el espesor de la capa superior de sal, y la porosidad dependiente de la profundidad determinaron que todos los recursos minerales de litio en el salar de Uyuni son alrededor de 7 millones de toneladas. La evaluación de las pruebas de bombeo en consideración de la densidad y la viscosidad de la salmuera transmitido mostró que la sal generalmente tiene una permeabilidad muy alta. Pero, las pruebas de flujo en muestras de núcleo mostró una anisotropía significativa de la permeabilidad con la profundidad, que se debe a una estratificación de sedimentos no homogénea debido las láminas finas de yeso o arcilla intercaladas. Por lo tanto, es correcto que los movimientos de salmuera horizontales son posibles, pero es poco probable que movimientos verticales de salmuera ocurran. Esta hipótesis se ve confirmada por la datación por radiocarbono de muestras de salmuera de diferentes profundidades de la sal. El impacto de las inundaciones anuales durante la estación lluviosa se puede observar a partir de las mediciones a largo plazo del nivel de salmuera. En el curso del análisis de series de tiempo también mostraron pronunciadas variaciones diarias periódicas de unos pocos centímetros en la estación seca. Esto sugiere que hay una corteza impermeable que se forma por evaporación de salmuera cerca de la superficie y la cristalización de sales en el espacio de los poros. En esta manera, las fluctuaciones diarias de temperatura y de preción de aire influyen directamente el nivel de salmuera. Gracias a las extensas investigaciones hidrogeológicas realizadas, la presente tesis contribuye significativamente a la comprensión de las condiciones hidráulicas en el Salar de Uyuni.
5

Hydraulic Investigations of the Salar de Uyuni, Bolivia

Sieland, Robert 12 December 2014 (has links)
With a surface area of about 10,000 km², the Salar de Uyuni is the largest salt flat in the world. It is located at an altitude of 3,653 m on the Altiplano, a high plateau in the south of the Bolivian Andes. The Salar de Uyuni consists of an alternating sequence of highly porous salt layers (mainly composed of halite) and lacustrine clay sediments. The pore volume of the uppermost salt layer which has a thickness of up to 11 m is filled by brine. The brine contains high amounts of Mg, K, Li and B. The element lithium is an especially important raw material for the production of batteries. Thus, it plays an important role for the development of the electric mobility. With this background, extensive hydrogeological exploration activities were carried out at the Salar de Uyuni in the context of this dissertation. The hydraulic properties of the uppermost salt crust and the physical properties (density and viscosity) of the brine must be characterized. In order to do this, several core drillings were made, observation wells were installed, brine samples were taken and pumping tests were conducted between 2009 and 2012. The stratigraphic documentation of the obtained sediment cores provided insights about the deposit structure and the upper salt layer thickness. The determination of the salt core porosity was carried out by three different methods: (a) by using X-ray computed tomography, (b) gravimetrically by saturation with 2-octanol and (c) by completion of the core volume with plasticine and calculation of the porosity under consideration of the particle density of the salt. The laboratory investigations showed a depth-dependent porosity distribution in the upper salt layer. The uppermost 2 m were characterized by very high porosity values between 30 and 39%. However at greater depth, the total porosity decreases on average to 13.5%. Geochemical analyses of brine samples confirmed the general spatial distribution of the lithium concentrations as already published by previous studies. On the basis of the lithium distribution in the brine, the thickness of the upper salt layer and the depth-dependent porosity distribution, the total lithium deposit in the Salar de Uyuni was calculated to be about 7 million tons. The evaluation of the pumping tests under consideration of the density and viscosity of the pumped brine showed that the salt has a very high permeability in the horizontal direction. In contrast, flow-through experiments on drill cores indicated a clear vertical anisotropy of the permeability. This is caused by the inhomogeneous sediment stratification for instance by interbedded fine gypsum or clay lamina. Thus, horizontal brine movements are possible, but a deep vertical flow component can hardly be expected. This assumption is confirmed by radiocarbon dating the brine samples from different salt depths. The influence of annual floods during the rainy season could be observed by long-term brine level measurements. Throughout the time-series analysis, distinct periodic brine fluctuations of a few centimeters per day could be identified during the dry season. These daily fluctuations indicated an impermeable crust probably formed by the evaporation of near-surface brine and subsequent crystallization of salts in the pore volume. Thus, daily temperature and atmospheric pressure changes could directly affect the brine level. Due to the extensive hydrogeological investigations, this dissertation contributes to the essential understanding of the hydraulic conditions in the Salar de Uyuni. / Mit einer Fläche von rund 10.000 km² ist der Salar de Uyuni die größte Salz-Ton-Ebene der Welt. Er befindet sich in einer Höhe von 3653 m NN im Altiplano, einer Hochebene im Süden der bolivianischen Anden. Der Salar de Uyuni besteht aus einer Wechsellagerung von hochporösen Salzschichten (überwiegend aus Halit bestehend) und lakustrinen Tonsedimenten. Die Porenräume der obersten bis zu 11 m mächtigen Salzschicht sind mit einer Sole gefüllt, die hohe Gehalte an Mg, K, Li und B aufweist. Insbesondere das Element Lithium ist ein wichtiger Rohstoff u.a. für die Herstellung von Batterien und spielt damit eine bedeutende Rolle bei der Entwicklung der Elektromobilität. Vor diesem Hintergrund wurden im Rahmen der vorliegenden Dissertation umfassende hydrogeologische Erkundungsarbeiten am Salar de Uyuni durchgeführt, um die hydraulischen Eigenschaften der obersten Salzkruste sowie die physikalischen Eigenschaften (Dichte und Viskosität) der Sole zu charakterisieren. Dazu wurden zwischen 2009 und 2012 zahlreiche Kernbohrungen abgeteuft, Beobachtungsbrunnen installiert, Soleproben entnommen und Pumpversuche durchgeführt. Die stratigraphische Dokumentation der gewonnenen Bohrkerne lieferte Erkenntnisse zur Ablagerungsstruktur und zur Mächtigkeitsverteilung der obersten Salzschicht. Die Bestimmung der Porosität der Salzkerne erfolgte mit drei verschiedenen Methoden: (a) mittels Computertomographie, (b) gravimetrisch durch Aufsättigung mit 2-Oktanol und (c) durch Volumenergänzung der Kernproben mit Plastilin und Berechnung der Porosität unter Einbeziehung der Reindichte des Salzes. Die Laboruntersuchungen zeigten eine tiefenabhängige Porositätsverteilung in der obersten Salzschicht. Während die obersten 2 m durch sehr hohe Porositäten zwischen 30 und 39% gekennzeichnet sind, nimmt die Gesamtporosität in größerer Tiefe auf durchschnittlich 13.5% ab. Geochemische Analysen von Soleproben bestätigten die grundsätzliche räumliche Verteilung der Lithium-Konzentrationen, wie sie bereits durch frühere Studien veröffentlicht wurde. Auf Basis der Lithium-Verteilung in der Sole, der Mächtigkeit der oberen Salzschicht sowie der tiefenabhängigen Porositätsverteilung wurde ein Lithium-Vorkommen im Salar de Uyuni von rund 7 Millionen Tonnen berechnet. Die Auswertung der Pumpversuche unter Berücksichtigung der Dichte und Viskosität der geförderten Sole zeigte, dass das Salz eine sehr hohe Permeabilität in horizontaler Richtung aufweist. Allerdings zeigten Durchströmungsversuche an Bohrkernen eine deutliche vertikale Anisotropie der Permeabilität, was auf die inhomogene Sedimentschichtung durch z.B. eingeschaltete feine Gips- oder Tonschichten zurückzuführen ist. Somit sind zwar horizontale Solebewegungen möglich, jedoch ist kaum mit einer tiefgreifenden vertikalen Strömungskomponente in der Salzschicht zu rechnen. Diese Vermutung wird durch 14C-Altersdatierungen von Soleproben aus unterschiedlichen Tiefen des Salzes bestätigt. Der Einfluss der jährlichen Überschwemmungen während der Regenzeit konnte anhand von Langzeitmessungen des Solespiegels beobachtet werden. Im Zuge der Zeitreihen-Analyse zeigten sich zudem ausgeprägte periodische Tageschwankungen von einigen Zentimetern während der Trockenzeit. Diese deuten darauf hin, dass durch Verdunstung oberflächennaher Sole und damit einhergehender Kristallisation von Salzen im Porenraum eine undurchlässige Kruste entsteht. Dadurch haben tägliche Temperatur- und Luftdruckschwankungen direkten Einfluss auf den Solespiegel. Die vorliegende Dissertation trägt aufgrund der umfangreichen hydrogeologischen Untersuchungen wesentlich zum Verständnis der hydraulischen Verhältnisse im Salar de Uyuni bei. / Con una superficie de aproximadamente 10.000 kilómetros cuadrados el Salar de Uyuni es el mayor lago de sal en el mundo. Se encuentra a una altura de 3.653 m sobre el nivel del mar en el altiplano en el sur de los Andes bolivianos. El Salar de Uyuni consiste en una alternancia de capas de sal altamente porosa (que consiste predominantemente de halita) y lacustre sedimentos de arcilla. La capa superior de sal tiene un espesor de hasta 11 metros. Los espacios de poros del sal se llenan con una salmuera que contiene altos contenidos de Mg, K, Li y B. En particular, el elemento litio constituye una importante materia prima para la producción de baterías que son utilizadas en la construcción de vehículos eléctricos. Bajo estos antecedentes y en el contexto de la presente tesis, se han desarrollado extensas actividades de exploración hidrogeológica en el Salar de Uyuni. Las propiedades hidráulicas de la corteza de sal superior y las propiedades físicas (densidad y viscosidad) de la salmuera debían caracterizadas. Para ello, entre 2009 y 2012 se realizaron varios perforaciones con la finalidad de obtener muestras de núcleos, se instalaron pozos de supervisión, se realizaron pruebas de bombeo y se tomaron muestras de salmuera. La documentación estratigráfica de los núcleos de perforacíon proporciona conocimientos para la estructura de los depósitos y para el espesor del superior capa de sal. La porosidad de los núcleos de sal fue determinada por medio de tres métodos diferentes: (a) por tomografía computarizada (TC), (b) gravimétricamente mediante la saturación con 2-octanol y (c) mediante de compleción del volumen del núcleo con plastilina y computacíon de la porosidad en atención a la densidad real del sal. Las investigaciones de laboratorio demostraron una distribución de la porosidad dependiente de la profundidad en la capa superior de sal. Mientras que la parte superior 2 m se caracterizan por altas porosidades entre el 30 y 39%, la porosidad total decrese en una profundidad mayor a un promedio de 13,5%. Los análisis geoquímicos de muestras de salmuera confirmaron la distribución espacial fundamental de las concentraciones de litio, como ya se ha publicado por estudios anteriores. A base de la distribución de litio en la salmuera, el espesor de la capa superior de sal, y la porosidad dependiente de la profundidad determinaron que todos los recursos minerales de litio en el salar de Uyuni son alrededor de 7 millones de toneladas. La evaluación de las pruebas de bombeo en consideración de la densidad y la viscosidad de la salmuera transmitido mostró que la sal generalmente tiene una permeabilidad muy alta. Pero, las pruebas de flujo en muestras de núcleo mostró una anisotropía significativa de la permeabilidad con la profundidad, que se debe a una estratificación de sedimentos no homogénea debido las láminas finas de yeso o arcilla intercaladas. Por lo tanto, es correcto que los movimientos de salmuera horizontales son posibles, pero es poco probable que movimientos verticales de salmuera ocurran. Esta hipótesis se ve confirmada por la datación por radiocarbono de muestras de salmuera de diferentes profundidades de la sal. El impacto de las inundaciones anuales durante la estación lluviosa se puede observar a partir de las mediciones a largo plazo del nivel de salmuera. En el curso del análisis de series de tiempo también mostraron pronunciadas variaciones diarias periódicas de unos pocos centímetros en la estación seca. Esto sugiere que hay una corteza impermeable que se forma por evaporación de salmuera cerca de la superficie y la cristalización de sales en el espacio de los poros. En esta manera, las fluctuaciones diarias de temperatura y de preción de aire influyen directamente el nivel de salmuera. Gracias a las extensas investigaciones hidrogeológicas realizadas, la presente tesis contribuye significativamente a la comprensión de las condiciones hidráulicas en el Salar de Uyuni.
6

Postglazialer Anstieg des Meeresspiegels, Paläoklima und Hydrographie, aufgezeichnet in Sedimenten der Bermuda inshore waters / Postglacial rise of sea level, palaeoclimate and hydrography, recorded in sediments of the Bermuda inshore waters

Vollbrecht, Rüdiger Dr. 13 January 1997 (has links)
No description available.

Page generated in 0.0375 seconds