• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 21
  • 20
  • 20
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 307
  • 307
  • 84
  • 52
  • 45
  • 28
  • 27
  • 25
  • 25
  • 24
  • 24
  • 23
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Microfossil Evidence for Recent and Past Changes to Hudson Bay Oceanography

Griffiths, Julie 26 November 2010 (has links)
In 2005, box cores were collected throughout the Hudson Bay and Strait. A detailed micropaleontological data set has been generated from these cores for this study and is combined with geochemical and geochronological data to observe temporal and spatial oceanographic changes throughout the bay and strait. All of the cores show an increase in tintinnid species and agglutinated foraminifera, and coincident decreases in calcareous foraminifera in younger core sections. In general, these microfossil trends are correlated with higher organic matter content of the younger core sections. This results from a more extensive freshwater plume that causes lowered pH in the superficial sediments and conditions less favourable for the preservation of calcareous tests. Furthermore, with a 14C age constraint in one of the cores, the mid-Holocene depositional and paleoceanographic history is represented, and provides evidence of marine invasion by 7100 cal yrs BP.
202

Response of RADAR Backscatter at Multiple Frequencies and Polarizations to Changing Snow and Ice Properties on a Temperate Saline Lake

Beckers, Justin F. Unknown Date
No description available.
203

On the Arctic Seasonal Cycle

Mortin, Jonas January 2014 (has links)
The seasonal cycle of snow and sea ice is a fundamental feature of the Arctic climate system. In the Northern Hemisphere, about 55 million km2 of sea ice and snow undergo complete melt and freeze processes every year. Because snow and sea ice are much brighter (higher albedo) than the underlying surface, their presence reduces absorption of incoming solar energy at high latitudes. Therefore, changes of the sea-ice and snow cover have a large impact on the Arctic climate and possibly at lower latitudes. One of the most important determining factors of the seasonal snow and sea-ice cover is the timing of the seasonal melt-freeze transitions. Hence, in order to better understand Arctic climate variability, it is key to continuously monitor these transitions. This thesis presents an algorithm for obtaining melt-freeze transitions using scatterometers over both the land and sea-ice domains. These satellite-borne instruments emit radiation at microwave wavelengths and measure the returned signal. Several scatterometers are employed: QuikSCAT (1999–2009), ASCAT (2009–present), and OSCAT (2009–present). QuikSCAT and OSCAT operate at Ku-band (λ=2.2 cm) and ASCAT at C-band (λ=5.7 cm), resulting in slightly different surface interactions. This thesis discusses these dissimilarities over the Arctic sea-ice domain, and juxtaposes the time series of seasonal melt-freeze transitions from the three scatterometers and compares them with other, independent datasets. The interactions of snow and sea ice with other components of the Arctic climate system are complex. Models are commonly employed to disentangle these interactions. But this hinges upon robust and well-formulated models, reached by perpetual testing against observations. This thesis also presents an evaluation of how well eleven state-of-the-art global climate models reproduce the Arctic sea-ice cover and the summer length—given by the melt-freeze transitions—using surface observations of air temperature. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: In press. Paper 4: Submitted.</p>
204

Biogeography and conservation of the pinnipeds (Carnivora: Mammalia)

Higdon, Jeffrey Wayde 14 January 2011 (has links)
This thesis examines the biogeography of world pinnipeds, a unique group of marine mammals that have adapted to marine foraging while maintaining terrestrial (land or ice) habitat links. Comparative analyses of species range sizes controlled for phylogenetic relationships using a multi-gene supertree with divergence dates estimated using fossil calibrations. Adaptations to aquatic mating and especially sea ice parturition have influenced range size distribution, and ranges are larger than those of terrestrially mating and/or pupping species. Small range size is endangering for many taxa, and most at risk pinnipeds are terrestrial species with small ranges. Ancestral state reconstructions suggest that pinnipeds had a long association with sea ice, an adaptation that would have allowed early seals to expand into novel habitats and increase their distribution. Range sizes exhibit a strong Rapoport effect (positive relationship between range size and latitude) at the global scale, even after controlling for phylogeny and body size allometry. A latitudinal gradient in species diversity cannot explain the Rapoport effect for global pinniped ranges, as diversity is highest at mid-latitudes in both hemispheres. These regions are characterized by marginal ice zones and variable climates, supporting a mix of pagophilic and temperate species. The climatic variability hypothesis also did not explain the Rapoport effect. Variability is bimodal, and annual sea surface temperature (SST) variability does explain diversity patterns. Range size has a significant negative relationship with annual mean SST, and the largest ranges are found in areas with low mean SST. Temperature responses are possibly related to thermoregulation, sea ice availability, and ecological relationships with other large marine predators. These results agree with other studies and suggest that ocean temperature, and not productivity, drives marine species richness patterns. Future research needs include studies of physiological tolerances, interactions with sharks as predators and competitors, and the role of climate and sea ice in speciation and evolution. A better understanding of distribution and diversity patterns, and the role of the environment in shaping these patterns, will improve conservation efforts, and studies on the role of SST and sea ice are particularly important given current warming trends and declines in ice extent.
205

Analysis of sea ice microalgae biomass variability using transmitted irradiance

Campbell, Karley 06 November 2012 (has links)
The spring bloom of microalgae within the bottom of sea ice provides a significant contribution to primary production in the Arctic Ocean. The aim of this research was to improve observations of the ice algae bloom using a transmitted irradiance technique to remotely estimate biomass, and to examine the influence of physical processes on biomass throughout the sea ice melt season. Results indicate that bottom ice temperature is highly influential in controlling biomass variability and bloom termination. Snow depth is also significant as it buffers ice temperature from the atmosphere and largely controls transmission of photosynthetically active radiation (PAR). The relationship between snow depth and biomass can change over the spring however, limiting biomass accumulation early on while promoting it later. Brine drainage, under-ice current velocity, and surface PAR in the absence of snow cover are also important factors. Overall this research helps to characterize the spring ice algae bloom in the Arctic by improving in situ biomass estimates and identifying primary factors controlling it.
206

Climate-induced changes in carbon and nitrogen cycling in the rapidly warming Antarctic coastal ocean

Henley, Sian Frances January 2013 (has links)
The western Antarctic Peninsula (WAP) is a hotspot of climatic and oceanographic change, with a 6°C rise in winter atmospheric temperatures and >1°C warming of the surface ocean since the 1950s. These trends are having a profound impact on the physical environment at the WAP, with widespread glacial retreat, a 40% decline in sea ice coverage and intensification of deep water upwelling. The main objective of this study is to assess the response of phytoplankton productivity to these changes, and implications for the marine carbon and nitrogen cycles in the WAP coastal zone. An extensive suite of biogeochemical and physical oceanographic data was collected over five austral summer growing seasons in northern Marguerite Bay between 2004 and 2010. Concentrations and isotopic compositions ( 15N, 13C, 14C) of dissolved nitrate, dissolved inorganic carbon species, particulate nitrogen, organic carbon and chlorophyll a are used in the context of a substantial ancillary dataset to investigate nutrient supply, phytoplankton productivity and nutrient uptake, export flux and the fate of organic material, and the factors underpinning pronounced seasonal and interannual variability. High-resolution biogeochemical time-series data for surface and underlying seawater, sea ice brine, sediment trap material and coretop sediments allow detailed examination of carbon and nitrogen cycle processes under contrasting oceanographic conditions and the interaction between these marine processes and air-sea exchange of climate-relevant CO2. This study shows that the WAP marine environment is currently a summertime sink for atmospheric CO2 in most years due to high productivity and biological carbon uptake sufficient to offset the CO2 supply from circumpolar deep waters, which act as a persistent source of heat, nutrients and CO2 across the shelf. For the first time, CO2 sink/source behaviour is parameterised in terms of nitrate utilisation, by exploiting the relationship between CO2 and nitrate concentrations, and deriving the nitrate depletion at which surface ocean CO2 is undersaturated relative to atmosphere and carbon sink behaviour is achieved. This could have vast utility in examining CO2 sink/source dynamics over greater spatial and temporal scales than by direct CO2 measurements, of which availability is more limited. This study documents abrupt changes in phytoplankton productivity, nitrate utilisation and biological CO2 uptake during a period of rapid sea ice decline. In fact, nitrate utilisation, particulate organic matter production and biological CO2 uptake all decrease by at least 50 % between a sea ice-influenced, high productivity season and one of low sea ice and low productivity. The key driver of interannual variability in production and export of organic material is found to be upper ocean stratification and its regulation of light availability to phytoplankton. Productivity, CO2 uptake and export are maximal when stratification is sufficient to provide a stable well-lit surface environment for phytoplankton growth, but with some degree of mixing to promote export of suspended organic matter. Strong stratification causes intense initial production, but retention of suspended organic particles in the surface ocean induces a self-shading effect, and overall productivity, CO2 uptake and export fluxes are low. When stratification is weak, mixing of phytoplankton over a larger depth range exposes cells to a wider range of light levels and reduces photosynthetic efficiency, thus total productivity and CO2 uptake. A conceptual model is developed here, which attempts to describe the mechanism by which sea ice dynamics exert the principal control on stratification and therefore productivity and CO2 uptake at the WAP, with potential application to other regions of the Antarctic continental shelf. Although meteoric waters (glacial melt and precipitation) are more prevalent in surface waters throughout the study, sea ice meltwater variability is driven by large and rapid spring/early summer pulses, which stabilise the upper ocean and initiate phytoplankton growth. The timing and magnitude of these sea ice melt pulses then exert the key control on stratification and seasonal productivity. In a low sea ice year of this study, the sea ice trigger mechanism was absent and productivity was low. This strongly suggests that ongoing sea ice decline at the WAP and greater frequency of such low sea ice years is likely to drive a dramatic reduction in productivity and export, which would substantially reduce the capacity of the summertime CO2 sink in this region. Ongoing warming and ecosystem change are thus likely to have severe impacts on net CO2 sink/source behaviour at the WAP over the annual cycle, and the role of the Southern Ocean in regulating atmospheric CO2 and global climate. Finally, factors influencing the stable isotopic signature of particulate organic carbon ( 13CPOC), a common paleo-proxy, are assessed. 13CPOC is greatly influenced by seasonal shifts in diatom assemblages and isotopically heavy sea ice material, so cannot be used as a robust proxy for ambient CO2 in the coastal Southern Ocean.
207

On the estimation of physical roughness of a marginal sea ice zone using remote sensing

Gupta, Mukesh 10 March 2014 (has links)
This thesis provides insight into techniques for the detection and classification of various marginal ice zone roughnesses in the southern Beaufort Sea using in situ and satellite-based microwave remote sensing. A proposed model of surface roughness shows the dependence of circular coherence, a discriminator of roughness, on the roughness and dielectrics. A relationship between ice slopes in azimuth and range direction is derived. Microwave brightness temperature of open water is significantly correlated with wave height but not with the wind speed, having the strongest correlations for the H-polarization at both 37 and 89 GHz. A modified formula for the relationship between non-dimensional form of energy and wave age at wind speeds 0−10 m/s is obtained. The brightness temperature (April−June) of sea ice at H-polarization of 89 GHz is found to decrease with increasing roughness, and is attributed to the dominant contributions from rapidly varying thermodynamic properties of snow-covered sea ice.
208

Biogeography and conservation of the pinnipeds (Carnivora: Mammalia)

Higdon, Jeffrey Wayde 14 January 2011 (has links)
This thesis examines the biogeography of world pinnipeds, a unique group of marine mammals that have adapted to marine foraging while maintaining terrestrial (land or ice) habitat links. Comparative analyses of species range sizes controlled for phylogenetic relationships using a multi-gene supertree with divergence dates estimated using fossil calibrations. Adaptations to aquatic mating and especially sea ice parturition have influenced range size distribution, and ranges are larger than those of terrestrially mating and/or pupping species. Small range size is endangering for many taxa, and most at risk pinnipeds are terrestrial species with small ranges. Ancestral state reconstructions suggest that pinnipeds had a long association with sea ice, an adaptation that would have allowed early seals to expand into novel habitats and increase their distribution. Range sizes exhibit a strong Rapoport effect (positive relationship between range size and latitude) at the global scale, even after controlling for phylogeny and body size allometry. A latitudinal gradient in species diversity cannot explain the Rapoport effect for global pinniped ranges, as diversity is highest at mid-latitudes in both hemispheres. These regions are characterized by marginal ice zones and variable climates, supporting a mix of pagophilic and temperate species. The climatic variability hypothesis also did not explain the Rapoport effect. Variability is bimodal, and annual sea surface temperature (SST) variability does explain diversity patterns. Range size has a significant negative relationship with annual mean SST, and the largest ranges are found in areas with low mean SST. Temperature responses are possibly related to thermoregulation, sea ice availability, and ecological relationships with other large marine predators. These results agree with other studies and suggest that ocean temperature, and not productivity, drives marine species richness patterns. Future research needs include studies of physiological tolerances, interactions with sharks as predators and competitors, and the role of climate and sea ice in speciation and evolution. A better understanding of distribution and diversity patterns, and the role of the environment in shaping these patterns, will improve conservation efforts, and studies on the role of SST and sea ice are particularly important given current warming trends and declines in ice extent.
209

Analysis of sea ice microalgae biomass variability using transmitted irradiance

Campbell, Karley 06 November 2012 (has links)
The spring bloom of microalgae within the bottom of sea ice provides a significant contribution to primary production in the Arctic Ocean. The aim of this research was to improve observations of the ice algae bloom using a transmitted irradiance technique to remotely estimate biomass, and to examine the influence of physical processes on biomass throughout the sea ice melt season. Results indicate that bottom ice temperature is highly influential in controlling biomass variability and bloom termination. Snow depth is also significant as it buffers ice temperature from the atmosphere and largely controls transmission of photosynthetically active radiation (PAR). The relationship between snow depth and biomass can change over the spring however, limiting biomass accumulation early on while promoting it later. Brine drainage, under-ice current velocity, and surface PAR in the absence of snow cover are also important factors. Overall this research helps to characterize the spring ice algae bloom in the Arctic by improving in situ biomass estimates and identifying primary factors controlling it.
210

SAR Remote Sensing of Canadian Coastal Waters using Total Variation Optimization Segmentation Approaches

Kwon, Tae-Jung 28 April 2011 (has links)
The synthetic aperture radar (SAR) onboard Earth observing satellites has been acknowledged as an integral tool for many applications in monitoring the marine environment. Some of these applications include regional sea-ice monitoring and detection of illegal or accidental oil discharges from ships. Nonetheless, a practicality of the usage of SAR images is greatly hindered by the presence of speckle noises. Such noise must be eliminated or reduced to be utilized in real-world applications to ensure the safety of the marine environment. Thus this thesis presents a novel two-phase total variation optimization segmentation approach to tackle such a challenging task. In the total variation optimization phase, the Rudin-Osher-Fatemi total variation model was modified and implemented iteratively to estimate the piecewise smooth state by minimizing the total variation constraints. In the finite mixture model classification phase, an expectation-maximization method was performed to estimate the final class likelihoods using a Gaussian mixture model. Then a maximum likelihood classification technique was utilized to obtain the final segmented result. For its evaluation, a synthetic image was used to test its effectiveness. Then it was further applied to two distinct real SAR images, X-band COSMO-SkyMed imagery containing verified oil-spills and C-band RADARSAT-2 imagery mainly containing two different sea-ice types to confirm its robustness. Furthermore, other well-established methods were compared with the proposed method to ensure its performance. With the advantage of a short processing time, the visual inspection and quantitative analysis including kappa coefficients and F1 scores of segmentation results confirm the superiority of the proposed method over other existing methods.

Page generated in 0.0656 seconds