• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 92
  • 55
  • 20
  • 11
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 391
  • 43
  • 40
  • 36
  • 36
  • 32
  • 31
  • 29
  • 27
  • 26
  • 26
  • 24
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Influência da época de plantio e corte na produtividade da cana-de-açúcar. / Influence of planting and harvesting season on sugarcane productivity.

Marchiori, Luís Fernando Sanglade 05 October 2004 (has links)
O planejamento de colheita na cultura da cana-de-açúcar busca otimizar o retorno econômico, baseado no conceito de que a cana tem uma época, durante o ano, onde ocorre máxima concentração de sacarose nos colmos. Realizaram-se neste trabalho estudos enfocando as influências dos fatores edafo-climáticos sobre o rendimento e açúcares totais recuperáveis. Foram testadas as hipóteses de que há interação entre as épocas de plantio e corte, bem como a hipótese de que há interação do tratamento muda inteira e picada com cada época de plantio. Utilizaram-se dados de pesquisa conduzida, no Campo de experimentação da COPERSUCAR - Piracicaba/SP, num solo Latossol Vermelho Eutrófico. O delineamento utilizado foi blocos ao acaso, com parcelas subdivididas em faixas e sub-subparcelas dentro das faixas. Os tratamentos foram épocas de plantio (Novembro, Janeiro, Março, Maio), as faixas foram épocas de corte (Maio, julho, Setembro, Novembro), e os sub-subtratamentos foram mudas picada e inteira. Mediram-se as variáveis: toneladas de colmos (TCH) e toneladas de açúcar por hectare (TAH), e açúcar total recuperável (ATR). A soqueira foi avaliada da mesma forma que o 1º corte, aos (12) meses de idade. Foram instalados três experimentos, cada um com uma variedade, SP 70-1143, NA 56-79 e SP 71-1406. Os experimentos foram instalados e repetidos em três anos-safra, 1983/84, 1984/85 e 1985/86, com colheitas nas safras dos anos de 1985 até 1988, obtendo-se assim, rendimentos de estágios iguais em anos diferentes e estágios diferentes no mesmo ano. Concluiu-se que as épocas de plantio afetaram TCH, ATR e TAH do 1º corte; épocas de plantio interagiram com os tipos de mudas na cana planta; épocas de corte afetaram TCH, ATR e TAH nas canas planta e soqueiras; ATR sempre evoluiu do início para o final da safra, com os picos nos meses de setembro e novembro; plantios tardios atrasam a maturação; os valores de TAH acompanham as curvas de ATR sendo influenciados por TCH. Para a variedade SP 70-1143 no primeiro corte o clima influenciou os resultados de épocas de plantio e de tipos de mudas; os menores valores de TCH foram obtidos nas épocas de plantio Maio com mudas de cana picada e nas demais épocas de plantio não houve diferenças, indicando que se podem plantar mudas de cana inteiras em qualquer época; nos dois cortes estudados, os maiores valores de ATR foram obtidos na colheita de Setembro e os menores valores foram obtidos na época de plantio de Maio indicando que o pico de maturação ocorre no mês de setembro. Para a variedade NA 56-79 os valores de TCH das mudas picadas e inteiras não mostraram diferenças indicando que se pode plantar cana inteira; os maiores valores de ATR e TAH foram obtidos a partir das colheitas de Julho. Para a variedade SP 71-1406, no primeiro corte, houve superioridade para mudas picadas sendo o melhor manejo, os menores valores de TCH foram obtidos no plantio de Maio e o maior valor de ATR foi obtido na colheita de Novembro; nos dois cortes os valores de TAH e de ATR indicaram que a colheita deve ser feita partir de setembro. / Harvest planning in sugarcane attempts to optimize the crop's economic return based on the concept that sugarcane presents, along the cropping season, a period during which the maximum concentration of sucrose occurs in the stalks. This work consisted of studies that focused on the influences of edaphic-climatic factors on yield and total recoverable sugars. The hypothesis was tested that an interaction exists between the planting and harvesting seasons, as well as the hypothesis that an interaction exists between the whole-stalk and the bud seedling treatments with each planting season. Data from a research conducted at COPERSUCAR’s Experimental Field - Piracicaba/SP, in a Red Eutrophic Latosol, were used. A random blocks design with strip split-plots was used, where sub-subplots were allocated within strips. Treatments were planting seasons (November, January, March, May), with harvesting seasons represented by strips (May, July, September, November), while sub-subtreatments consisted of bud and whole-stalk seedlings. The variables measured were: tons of sugarcane stalks (TSS) and tons of sugar per hectare (TSH), and total recoverable sugar (TRS). The ratoon (second cut) was evaluated in the same manner as the 1st cut, when sugarcane was 12 months old. Three experiments were installed, each consisting of one variety: SP 70-1143, NA 56-79, and SP 71-1406. The experiments were installed and replicated in three cropping years: 1983/84, 1984/85, and 1985/86, with harvests in the cropping seasons from 1985 through 1988; therefore, yields for the same stage in different years, and yields for different stages in the same year were obtained. It was concluded that planting seasons affected TSS, TRS, and TSH in the 1st cut; planting seasons interacted with seedling types in one-year-old sugarcane; harvesting seasons affected TSS, TRS, and TSH in one-year-old and ratoon sugarcane; TRS always progressed from the beginning to the end of the cropping season, with peaks in the months of September and November; late plantings delayed maturation; TSH values followed the TRS curves, and were influenced by TSS. In the first cut of variety SP 70-1143, climate influenced the planting season and seedling type results; the smallest TSS values were obtained in the May planting seasons with bud seedlings, while no differences were observed in the other planting seasons, indicating that whole-stalk seedlings can be planted in any season; in both cuts under study, the highest TRS values were obtained for the September harvesting, and the smallest values were obtained for the May planting season, indicating that peak maturity occurs in the month of September. In variety NA 56-79, the TSS values for bud and whole-stalk seedlings did not show differences, indicating that whole-stalk cane can be planted; the highest TRS and TSH values were obtained from harvests made in July. In the first cut of variety SP 71-1406, the best management consisted of bud seedlings, which were superior; the smallest TSS values were obtained for the May planting and the highest TRS value was obtained for the November harvesting; in both cuts, the TSH and TRS values indicated that harvesting should be done beginning in September.
32

Influência da época de plantio e corte na produtividade da cana-de-açúcar. / Influence of planting and harvesting season on sugarcane productivity.

Luís Fernando Sanglade Marchiori 05 October 2004 (has links)
O planejamento de colheita na cultura da cana-de-açúcar busca otimizar o retorno econômico, baseado no conceito de que a cana tem uma época, durante o ano, onde ocorre máxima concentração de sacarose nos colmos. Realizaram-se neste trabalho estudos enfocando as influências dos fatores edafo-climáticos sobre o rendimento e açúcares totais recuperáveis. Foram testadas as hipóteses de que há interação entre as épocas de plantio e corte, bem como a hipótese de que há interação do tratamento muda inteira e picada com cada época de plantio. Utilizaram-se dados de pesquisa conduzida, no Campo de experimentação da COPERSUCAR – Piracicaba/SP, num solo Latossol Vermelho Eutrófico. O delineamento utilizado foi blocos ao acaso, com parcelas subdivididas em faixas e sub-subparcelas dentro das faixas. Os tratamentos foram épocas de plantio (Novembro, Janeiro, Março, Maio), as faixas foram épocas de corte (Maio, julho, Setembro, Novembro), e os sub-subtratamentos foram mudas picada e inteira. Mediram-se as variáveis: toneladas de colmos (TCH) e toneladas de açúcar por hectare (TAH), e açúcar total recuperável (ATR). A soqueira foi avaliada da mesma forma que o 1º corte, aos (12) meses de idade. Foram instalados três experimentos, cada um com uma variedade, SP 70-1143, NA 56-79 e SP 71-1406. Os experimentos foram instalados e repetidos em três anos-safra, 1983/84, 1984/85 e 1985/86, com colheitas nas safras dos anos de 1985 até 1988, obtendo-se assim, rendimentos de estágios iguais em anos diferentes e estágios diferentes no mesmo ano. Concluiu-se que as épocas de plantio afetaram TCH, ATR e TAH do 1º corte; épocas de plantio interagiram com os tipos de mudas na cana planta; épocas de corte afetaram TCH, ATR e TAH nas canas planta e soqueiras; ATR sempre evoluiu do início para o final da safra, com os picos nos meses de setembro e novembro; plantios tardios atrasam a maturação; os valores de TAH acompanham as curvas de ATR sendo influenciados por TCH. Para a variedade SP 70-1143 no primeiro corte o clima influenciou os resultados de épocas de plantio e de tipos de mudas; os menores valores de TCH foram obtidos nas épocas de plantio Maio com mudas de cana picada e nas demais épocas de plantio não houve diferenças, indicando que se podem plantar mudas de cana inteiras em qualquer época; nos dois cortes estudados, os maiores valores de ATR foram obtidos na colheita de Setembro e os menores valores foram obtidos na época de plantio de Maio indicando que o pico de maturação ocorre no mês de setembro. Para a variedade NA 56-79 os valores de TCH das mudas picadas e inteiras não mostraram diferenças indicando que se pode plantar cana inteira; os maiores valores de ATR e TAH foram obtidos a partir das colheitas de Julho. Para a variedade SP 71-1406, no primeiro corte, houve superioridade para mudas picadas sendo o melhor manejo, os menores valores de TCH foram obtidos no plantio de Maio e o maior valor de ATR foi obtido na colheita de Novembro; nos dois cortes os valores de TAH e de ATR indicaram que a colheita deve ser feita partir de setembro. / Harvest planning in sugarcane attempts to optimize the crop's economic return based on the concept that sugarcane presents, along the cropping season, a period during which the maximum concentration of sucrose occurs in the stalks. This work consisted of studies that focused on the influences of edaphic-climatic factors on yield and total recoverable sugars. The hypothesis was tested that an interaction exists between the planting and harvesting seasons, as well as the hypothesis that an interaction exists between the whole-stalk and the bud seedling treatments with each planting season. Data from a research conducted at COPERSUCAR’s Experimental Field – Piracicaba/SP, in a Red Eutrophic Latosol, were used. A random blocks design with strip split-plots was used, where sub-subplots were allocated within strips. Treatments were planting seasons (November, January, March, May), with harvesting seasons represented by strips (May, July, September, November), while sub-subtreatments consisted of bud and whole-stalk seedlings. The variables measured were: tons of sugarcane stalks (TSS) and tons of sugar per hectare (TSH), and total recoverable sugar (TRS). The ratoon (second cut) was evaluated in the same manner as the 1st cut, when sugarcane was 12 months old. Three experiments were installed, each consisting of one variety: SP 70-1143, NA 56-79, and SP 71-1406. The experiments were installed and replicated in three cropping years: 1983/84, 1984/85, and 1985/86, with harvests in the cropping seasons from 1985 through 1988; therefore, yields for the same stage in different years, and yields for different stages in the same year were obtained. It was concluded that planting seasons affected TSS, TRS, and TSH in the 1st cut; planting seasons interacted with seedling types in one-year-old sugarcane; harvesting seasons affected TSS, TRS, and TSH in one-year-old and ratoon sugarcane; TRS always progressed from the beginning to the end of the cropping season, with peaks in the months of September and November; late plantings delayed maturation; TSH values followed the TRS curves, and were influenced by TSS. In the first cut of variety SP 70-1143, climate influenced the planting season and seedling type results; the smallest TSS values were obtained in the May planting seasons with bud seedlings, while no differences were observed in the other planting seasons, indicating that whole-stalk seedlings can be planted in any season; in both cuts under study, the highest TRS values were obtained for the September harvesting, and the smallest values were obtained for the May planting season, indicating that peak maturity occurs in the month of September. In variety NA 56-79, the TSS values for bud and whole-stalk seedlings did not show differences, indicating that whole-stalk cane can be planted; the highest TRS and TSH values were obtained from harvests made in July. In the first cut of variety SP 71-1406, the best management consisted of bud seedlings, which were superior; the smallest TSS values were obtained for the May planting and the highest TRS value was obtained for the November harvesting; in both cuts, the TSH and TRS values indicated that harvesting should be done beginning in September.
33

Frequency of in-season strength and power training for rugby league

Masters, Haydn, res.cand@acu.edu.au January 2001 (has links)
The purpose of this study was to determine the contribution of different in-season strength and power training frequencies to strength and power performance over the course of a 22 week rugby league competition period. Twenty-eight male (n=28) participants, with both high and low strength pre-training status, were divided into three groups following a 15 week pre-season strength and power training programme. A four week periodised in-season strength and power training programme, with intensities ranging from 75-100%, was cycled for the 22 week competition season. Strength and power training was conducted one day.week(-1) by the first high pre-training status group (HTFL, n=11), and two day.week(-1) by the second high pre-training status group (HTF2, n=9). The low pre-training status group (LTF1, n=8) performed the same strength and power training frequency and programme as HTF1. Training intensity (% 1RM) and volume (sets x repetitions) of in-season strength and power training sessions were standardised for both groups during each training week. Strength, power, and speed data were collected pre-season, and four times during the in-season period. No differences were found between HTF1 and HTF2 in performance variables throughout the 22-week in-season period. Both HTF1 and HTF2 displayed similar significant detraining effects in strength, power, and speed, regardless of in-season training frequency (p<0.05). LTF1 showed no change from pre-season strength and power performance following 22 weeks of the competition period (p<0.05). It was concluded that in-season strength and power training frequency may have a limited role in determining the success of the in-season strength and power training programme in highly trained footballers. The results of the present study suggest a number of factors other than in-season strength and power training frequency may affect in-season strength and power performance and detraining in high strength pre-training status athletes. The effect the start of a competition period has on dynamic athletic performance needs further investigation.
34

Comparing simple and complex native forage mixtures for grazing cattle in southwestern Saskatchewan

Kusler, Justin P 13 January 2010
Diverse forage mixtures have improved resilience to drought, improved persistence, ability to adapt to changing environmental conditions, reduced fertilizer costs, improved root mass and greater soil carbon sequestration but do they improve forage and animal production. The objective was to determine if complex native forage mixtures provide superior nutritional quality throughout the grazing season as compared to simple native mixtures. Three studies were conducted in 2007 at Swift Current, SK to evaluate forage production potentials, nutritive qualities and in vitro dry matter digestibility of native and tame forage species common to or having potential in Southwestern Saskatchewan. In study one, plots were seeded in 2006 on Chernozemic Orthic Brown Swinton Loam soils and consisted of 11 native and three tame monoculture species common to southwestern Saskatchewan. Clippings at a 5 cm stubble height occurred on June 20 and every 28 days after until October 10. Forage DM production, in vitro OMD, NDF, ADF, ADL, CP, Ca and P concentrations were measured. As species matured, production and OMD declined (P¡Ü0.05) but NDF, ADF and ADL concentrations increased (P¡Ü0.05). There were harvest date by species differences (P¡Ü0.05) in forage production and nutritional qualities of C3 and C4 grass and legume species. Study two examined the in situ CP, NDF and DM disappearance of six selected species harvested in the fall. EDNDF and ADDM values did not differ (P>0.05) among C3 grasses. The C4 grasses had higher (P<0.05) EDNDF and EDDM and the legume, Canadian milkvetch had the highest (P<0.05) EDDM but lowest EDNDF. Study three occurred in 2005, 2006 and 2007 to determine if complex native forage mixtures had superior forage and animal production as compared to simple forage stands. Grazing occurred from June through August to achieve 60% utilization. Animal weights and available, cage and residual forage yields were taken to determine production and utilization. Forage production and quality did not differ (P>0.05) between simple and complex forage mixtures but animal production (AUD ha-1) was higher on complex native mixtures. Overall results showed; 1) C3 and C4 grass and legume species have different growth patterns and qualities that can improve forage quality and degradability of the stand throughout the grazing season, 2) forage and animal production benefits associated with complex native forage mixtures largely depend on environmental conditions like temperature and moisture.
35

Comparing simple and complex native forage mixtures for grazing cattle in southwestern Saskatchewan

Kusler, Justin P 13 January 2010 (has links)
Diverse forage mixtures have improved resilience to drought, improved persistence, ability to adapt to changing environmental conditions, reduced fertilizer costs, improved root mass and greater soil carbon sequestration but do they improve forage and animal production. The objective was to determine if complex native forage mixtures provide superior nutritional quality throughout the grazing season as compared to simple native mixtures. Three studies were conducted in 2007 at Swift Current, SK to evaluate forage production potentials, nutritive qualities and in vitro dry matter digestibility of native and tame forage species common to or having potential in Southwestern Saskatchewan. In study one, plots were seeded in 2006 on Chernozemic Orthic Brown Swinton Loam soils and consisted of 11 native and three tame monoculture species common to southwestern Saskatchewan. Clippings at a 5 cm stubble height occurred on June 20 and every 28 days after until October 10. Forage DM production, in vitro OMD, NDF, ADF, ADL, CP, Ca and P concentrations were measured. As species matured, production and OMD declined (P¡Ü0.05) but NDF, ADF and ADL concentrations increased (P¡Ü0.05). There were harvest date by species differences (P¡Ü0.05) in forage production and nutritional qualities of C3 and C4 grass and legume species. Study two examined the in situ CP, NDF and DM disappearance of six selected species harvested in the fall. EDNDF and ADDM values did not differ (P>0.05) among C3 grasses. The C4 grasses had higher (P<0.05) EDNDF and EDDM and the legume, Canadian milkvetch had the highest (P<0.05) EDDM but lowest EDNDF. Study three occurred in 2005, 2006 and 2007 to determine if complex native forage mixtures had superior forage and animal production as compared to simple forage stands. Grazing occurred from June through August to achieve 60% utilization. Animal weights and available, cage and residual forage yields were taken to determine production and utilization. Forage production and quality did not differ (P>0.05) between simple and complex forage mixtures but animal production (AUD ha-1) was higher on complex native mixtures. Overall results showed; 1) C3 and C4 grass and legume species have different growth patterns and qualities that can improve forage quality and degradability of the stand throughout the grazing season, 2) forage and animal production benefits associated with complex native forage mixtures largely depend on environmental conditions like temperature and moisture.
36

Effect of surface roughness and mulch on semi-arid revegetation success, soil chemistry and soil movement

Beggy, Holly M., Fehmi, Jeffrey S. 08 1900 (has links)
For the successful reclamation of disturbed land, the reduction of initial erosion risk must be balanced with later vegetation establishment. A combination of erosion control and revegetation practices was researched using commercial (full-sized) equipment on a semi-desert grassland site in southern Arizona, USA. Two soils with different parent materials were used to add a 30 cm cap on sites at two elevations: 1646 and 1403 m asl. There were two surface roughness treatments: smooth and rough. Three straw mulch treatments were applied: no mulch, mulch incorporated into the surface soil, and mulch tackified onto the surface. Plots were planted with a 10 species native mix dominated by perennial grasses. After two growing seasons, the incorporated mulch treatment resulted in significantly more seeded grass aboveground biomass than the no mulch treatment while the no mulch treatment had more forb and volunteer biomass than the surface mulch treatment. There was significantly higher erosion on the rough surface treatment compared to the smooth surface. Increasing perennial grass biomass was correlated with reduced erosion while forb and volunteer biomass showed no relationship with erosion. The smooth surface with surface mulch best established perennial grasses, minimized weeds, and reduced erosion. This combination of practices both minimized erosion as well as maximized vegetation establishment. (C) 2016 The Authors. Published by Elsevier B.V.
37

Representation, New Documentary Movement: "A Bite of China: Season I"

Cheng, Zhuofei January 2016 (has links)
This thesis attempts to explore within what historical context and with what documented content, A Bite of China: Season I, a Chinese documentary television series that explores the history of food, eating and cooking garners widespread popularity. By theoretical analyses, Chapter 1 concludes the relationship between documentary and the "reality" is built upon representation and there is "something beyond reality" in documentary. Moreover, in documentary representation, affect helps the "reality" to transform into "documentary reality," and affect is the key to understand "something beyond reality." In order to analyze documentary in historical context, Chapter 2 reviews and analyzes western documentary film history, Chinese television documentary history and The New Documentary Movement in China. As conclusion shows, this movement changes Chinese documentary history and provides historical context for A Bite of China. In particular, it makes common Chinese people's lives and general Chinese society become main documented content, which constitutes a non-governmental power discourse. Chapter 3 turn the case study of A Bite of China. As it concludes, historical context is the integration between governmental discourse and non-governmental discourse. As for documented content, the intertwined representation between the representation of Chinese gourmet food and affective resonance among director, documented people and spectators makes A Bite of China popular. This thesis advances "affect" as an approach to further understand "documentary reality" and provides a new viewpoint on how A Bite of China becomes a popular Chinese television documentary.
38

The Effect of Narrow Rows and Plant Population on Short Season Cotton Production

Briggs, R. E., Buxton, D. R., Patterson, L. L. 02 1900 (has links)
No description available.
39

Breeding Cotton Adapted for Narrow-Row, High Population Culture

Muramoto, H. 02 1900 (has links)
No description available.
40

Summary of Narrow-Row, High Population Genotype Tests in Arizona from 1970 through 1973 at Various Locations

Muramoto, H., Briggs, R. E., Buxton, D. R., Patterson, L. L., Fisher, W. D., Tilt, P. 02 1900 (has links)
No description available.

Page generated in 0.0363 seconds