Spelling suggestions: "subject:"1second quantization"" "subject:"1second cuantization""
1 |
First and Second Quantization Theories of ParastatisticsVo-Dai, Thien 07 1900 (has links)
<p> Although usually only two kinds of statistics, namely Bose-Einstein and Fermi-Dirac statistics, are considered in Quantum Mechanics and in Quantum Field Theory, other kinds of statistics, called collectively parastatistics, are conceivable. We critically review theoretical studies of parastatistics to date, point out and clarify several confusions.</p> <p> We first study the "proofs" so far proposed for the symmetrization postulate which excludes parastatistics, emphasizing their ad hoc nature. Then, after exploring in detail the structure of the quantum mechanical theory of paraparticles, we clarify some confusions concerning the compatibility of parastatistics with the so-called cluster property, which has been an issue of controversy for several years. We show, following a suggestion of Greenberg, that the quantum mechanical theory of paraparticles can be formulated in terms of density matrix compatibly with the cluster property. We also discuss such topics as selection rules for systems with variable numbers of paraparticles, the connection between statistics and permutation characters, and the classification of paraparticles.</p> <p> For the quantum field theory of paraparticles, we study discrete representations of the para-commutation relations and illustrate in detail Greenberg and Messiah's theorem concerning Green's ansatzes. Also, fundamental topics such as the spin-statistic theorem, the TCP theorem and the observability of parafields are discussed on the basis of Green's ansatzes. Finally, we point out that the so-called particle permutation operators do not always define multi-dimensional representations of the permutation group both in first and second quantization theories. This questions the validity of the correspondence between the two theories which has recently been proposed.</p> / Thesis / Doctor of Philosophy (PhD)
|
2 |
The study of charge ordering in colossal magnetoresistanceLee, Kung-Chieh 09 January 2006 (has links)
Hole-doped maganite with middle to narrow bandwidth La1-xCaxMnO3 was extensively studied because of its colossal magnetoresistance (CMR) characteristic under a magnetic field. These kind of materials show un- common magnetic and electric properties. The charge order phase only happens to the region x> 0.5, and along with decreasing temperature, its phase goes from para-insulator to charge-ordered then to antiferromagne-
tism. In our studies, we apply correlation function of Green¡¦s function to LCMO and get susceptibility of charge and spin. Then we can get the cri-
tical value of Coulomb repulsion inside the material by substituting the
experimental values of phase transition temperature. This critical values is the key point of charge-ordered. Then we can also get the size of char- ge gap which decides the stability of charge-ordered phase. After know- ing the Coulomb repulsion and charge gap, we can picture the relation of inside and on-site Coulomb repulsion qualitatively while the transition happens. Here the on-site Coulomb repulsion means to the Hund¡¦s coupl- ing between d electrons. And by this we¡¦ll understand the physics inside
CMR materials.
|
3 |
Field Quantization for Radiative Decay of Plasmons in Finite and Infinite GeometriesBagherian, Maryam 18 March 2019 (has links)
We investigate field quantization in high-curvature geometries. The models and calculations can help with understanding the elastic and inelastic scattering of photons and electrons in nanostructures and probe-like metallic domains. The results find important applications in high-resolution photonic and electronic modalities of scanning probe microscopy, nano-optics, plasmonics, and quantum sensing.
Quasistatic formulation, leading to nonretarded quantities, is employed and justified on the basis of the nanoscale, here subwavelength, dimensions of the considered domains of interest.
Within the quasistatic framework, we represent the nanostructure material domains with frequency-dependent dielectric functions. Quantities associated with the normal modes of the electronic systems, the nonretarded plasmon dispersion relations, eigenmodes, and fields are then calculated for several geometric entities of use in nanoscience and nanotechnology.
From the classical energy of the charge density oscillations in the modeled nanoparticle, we then derive the Hamiltonian of the system, which is used for quantization.
The quantized plasmon field is obtained and, employing an interaction Hamiltonian derived from the first-order perturbation theory within the hydrodynamic model of an electron gas, we obtain an analytical expression for the radiative decay rate of the plasmons.
The established treatment is applied to multiple geometries to investigate the quantized charge density oscillations on their bounding surfaces. Specifically, using one sheet of a two-sheeted hyperboloid of revolution, paraboloid of revolution, and cylindrical domains, all with one infinite dimension, and the finite spheroidal and toroidal domains are treated.
In addition to a comparison of the paraboloidal and hyperboloidal results, interesting similarities are observed for the paraboloidal domains with respect to the surface modes and radiation patterns of a prolate spheroid, a finite geometric domain highly suitable for modeling of nanoparticles such as quantum dots. The prolate and oblate spheroidal calculations are validated by comparison to the spherical case, which is obtained as a special case of a spheroid.
In addition to calculating the potential and field distributions, and dispersion relations, we study the angular intensity and the relation between the emission angle with the rate of radiative decay.
The various morphologies are compared for their plasmon dispersion properties, field distributions, and radiative decay rates, which are shown to be consistent.
For the specific case of a nanoring, modeled in the toroidal geometry, significant complexity arises due to an inherent coupling among the various modes. Within reasonable approximations to decouple the modes, we study the radiative decay channel for a vacuum bounded single solid nanoring by quantizing the fields associated with charge density oscillations on the nanoring surface. Further suggestions are made for future studies. The obtained results are relevant to other material domains that model a nanostructure such as a probe tip, quantum dot, or nanoantenna.
|
4 |
Investigation of a newrepresentation of spinPalmgren Thun, Minna January 2023 (has links)
The Bose-Hubbard Model, a tight binding model within solid state theory can be solved exactly using a number theoretical approach. From this approach, in the two sited Bose-Hubbard model, the hopping term in the model takes the form of a Pauli x matrix. The hopping term can be interpreted as a two energy level system or a dimer with k+1 particles. The statistical properties of this dimer is investigated assuming Boltzmann distribution. The partition function and particle density on each site in the dimer is calculated for spin 1/2 system. The entropy and average energy is also calculated. The particle density is calculated and plotted as a function of temperature for the spin 1/2,1,3/2 and 2 system. At low temperature the particles are more likely to be found in the lower energy site and at high temperatures the particles is equally distributed at the both sites. / Bose-Hubbard modellen är en tight binding modell inom fasta tillstånd- ets fysik som kan lösas exakt genom att använda en talteoretisk lösning- smetod. Genom att göra detta med bara två interagerande platser i modellen tar hoppingtermen i modellen formen av en Pauli x-matris. Hopping modellen kan tolkas som ett system med två energinivåer eller en så kallad dimer med k+1 partiklar. Dimerens statistiska egenskaper undersöks utifrån Boltzmannfördelningen. Partitionsfunktionen och partikeldensiteten på varje plats i dimeren beräkn- as för ett spin 1/2 system, tillsammans med entropin och medelenergin. Vidare är partikeldensiteten beräknad och plottad som funktion av temperaturen för spinn 1/2, 1, 3/2 och 2 system. Vid låg temperatur befinner sig partiklarna i dimeren i den lägre energinivån och vid hög temperatur är partiklarna jämt fördelade i de två energinivåerna
|
5 |
The formalism of non-commutative quantum mechanics and its extension to many-particle systemsHafver, Andreas 12 1900 (has links)
Thesis (MSc (Physics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates
the notion of a fundamental shortest length scale by introducing non-commuting
position coordinates. Various theories of quantum gravity indicate the existence of such
a shortest length scale in nature. It has furthermore been realised that certain condensed
matter systems allow effective descriptions in terms of non-commuting coordinates. As a
result, non-commutative quantum mechanics has received increasing attention recently.
A consistent formulation and interpretation of non-commutative quantum mechanics,
which unambiguously defines position measurement within the existing framework of quantum
mechanics, was recently presented by Scholtz et al. This thesis builds on the latter
formalism, extends it to many-particle systems and links it up with non-commutative
quantum field theory via second quantisation. It is shown that interactions of particles,
among themselves and with external potentials, are altered as a result of the fuzziness
induced by non-commutativity. For potential scattering, generic increases are found for
the differential and total scattering cross sections. Furthermore, the recovery of a scattering
potential from scattering data is shown to involve a suppression of high energy
contributions, disallowing divergent interaction forces. Likewise, the effective statistical
interaction among fermions and bosons is modified, leading to an apparent violation of
Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities. / AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die
idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate.
Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal
in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe
beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld
van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet.
’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika,
wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is
onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen
dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie
d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met
eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi
¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak.
Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata
’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied.
Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander,
wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge
vir termodinamika by ho¨e digthede.
|
6 |
Théorie de champ-moyen et dynamique des systèmes quantiques sur réseau / Mean-field theory and dynamics of lattice quantum systemsRouffort, Clément 10 December 2018 (has links)
Cette thèse est dédiée à l'étude mathématique de l'approximation de champ-moyen des gaz de bosons. En physique quantique une telle approximation est vue comme la première approche permettant d'expliquer le comportement collectif apparaissant dans les systèmes quantiques à grand nombre de particules et illustre des phénomènes fondamentaux comme la condensation de Bose-Einstein et la superfluidité. Dans cette thèse, l'exactitude de l'approximation de champ-moyen est obtenue de manière générale comme seule conséquence de principes de symétries et de renormalisations d'échelles. Nous recouvrons l'essentiel des résultats déjà connus sur le sujet et de nouveaux sont prouvés, particulièrement pour les systèmes quantiques sur réseau, incluant le modèle de Bose-Hubbard. D'autre part, notre étude établit un lien entre les équations aux hiérarchies de Gross-Pitaevskii et de Hartree, issues des méthodes BBGKY de la physique statistique, et certaines équations de transport ou de Liouville dans des espaces de dimension infinie. Résultant de cela, les propriétés d'unicité pour de telles équations aux hiérarchies sont prouvées en toute généralité utilisant seulement les caractéristiques génériques de problèmes aux valeurs initiales liés à de telles équations. Egalement, de nouveaux résultats de caractères bien posés et un contre-exemple à l'unicité d'une hiérarchie de Gross-Pitaevskii sont prouvés. L’originalité de nos travaux réside dans l'utilisation d'équations de Liouville et de puissantes techniques de transport étendues à des espaces fonctionnels de dimension infinie et jointes aux mesures de Wigner, ainsi qu'à une approche utilisant les outils de la seconde quantification. Notre contribution peut être vue comme l'aboutissement d'idées initiées par Z. Ammari, F. Nier et Q. Liard autour de la théorie de champ-moyen. / This thesis is dedicated to the mathematical study of the mean-field approximation of Bose gases. In quantum physics such approximation is regarded as the primary approach explaining the collective behavior appearing in large quantum systems and reflecting fundamental phenomena as the Bose-Einstein condensation and superfluidity. In this thesis, the accuracy of the mean-field approximation is proved in full generality as a consequence only of scaling and symmetry principles. Essentially all the known results in the subject are recovered and new ones are proved specifically for quantum lattice systems including the Bose-Hubbard model. On the other hand, our study sets a bridge between the Gross-Pitaevskii and Hartree hierarchies related to the BBGKY method of statistical physics with certain transport or Liouville's equations in infinite dimensional spaces. As an outcome, the uniqueness property for these hierarchies is proved in full generality using only generic features of some related initial value problems. Again, several new well-posedness results as well as a counterexample to uniqueness for the Gross-Pitaevskii hierarchy equation are proved. The originality in our works lies in the use of Liouville's equations and powerful transport techniques extended to infinite dimensional functional spaces together with Wigner probability measures and a second quantization approach. Our contributions can be regarded as the culmination of the ideas initiated by Z. Ammari, F. Nier and Q. Liard in the mean-field theory.
|
7 |
Equações de onda generalizadas e quantização funtorial para teorias de campo escalar livre / Generalized wave equations and functorial quantization for free scalar field theories.Vasconcellos, João Braga de Góes e 07 April 2016 (has links)
Nesta dissertação apresentamos um método de quantização matemática e conceitualmente rigoroso para o campo escalar livre de interações. Trazemos de início alguns aspéctos importantes da Teoria de Distribuições e colocamos alguns pontos de geometria Lorentziana. O restante do trabalho é dividido em duas partes: na primeira, estudamos equações de onda em variedades Lorentzianas globalmente hiperbólicas e apresentamos o conceito de soluções fundamentais no contexto de equações locais. Em seguida, progressivamente construímos soluções fundamentais para o operador de onda a partir da distribuição de Riesz. Uma vez estabelecida uma solução para a equação de onda em uma vizinhança de um ponto da variedade, tratamos de construir uma solução global a partir da extensão do problema de Cauchy a toda a variedade, donde as soluções fundamentais dão lugar aos operadores de Green a partir da introdução de uma condição de contorno. Na última parte do trabalho, apresentamos um mínimo da Teoria de Categorias e Funtores para utilizar esse formalismo na contrução de um funtor de segunda quantização entre a categoria de variedades Lorentzianas globalmente hiperbólicas e a categoria de redes de álgebras C* satisfazendo os axiomas de Haag-Kastler. Ao fim, retomamos o caso particular do campo escalar quântico livre. / In this thesis we present a both mathematical and conceptually rigorous quantization method for the neutral scalar field free of interactions. Initially, we introduce some aspects of the Theory of Distributions and we establish some points of Lorentzian geometry. The rest of the work is divided in two parts: in the first one, we study wave equations on globally hyperbolic Lorentzian manifolds, hence presenting the concept of fundamental solutions within the context of locally defined wave equations. Next, we progressively construct fundamental solutions for the wave operator from the Riesz distribution. Once established a solution to the wave equation in a neighbourhood of a point of the manifold, we move forward to produce a global solution from the extension of the Cauchy problem to the whole manifold. At this stage, fundamental solutions are replaced by Green\'s operators by the imposition of appropriate boundary conditions. In the last part, we present a minimum on the Theory of Categories and Functors. This is followed by the use of this formalism in the development of a second-quantization functor between the category of Lorentzian globally hyperbolic manifolds and the category of nets of C*-algebras obeying Haag-Kastler axioms. Finally, we turn our attention to the particular case of the quantum free scalar field.
|
8 |
Exact Diagonalization of Few-electron Quantum DotsHakimi, Shirin January 2009 (has links)
<p>We consider a system of few electrons trapped in a two-dimensional circularquantum dot with harmonic confinement and in the presence of ahomogeneous magnetic field, with focus on the role of e-e interaction. Byperforming the exact diagonalization of the Hamiltonian in second quantization,the low-lying energy levels for spin polarized system are obtained. The singlet-triplet oscillation in the ground state of the two-electron system showing up inthe result is explained due to the role of Coulomb interaction. The splitting ofthe lowest Landau level is another effect of the e-e interaction, which is alsoobserved in the results.</p>
|
9 |
Exact Diagonalization of Few-electron Quantum DotsHakimi, Shirin January 2009 (has links)
We consider a system of few electrons trapped in a two-dimensional circularquantum dot with harmonic confinement and in the presence of ahomogeneous magnetic field, with focus on the role of e-e interaction. Byperforming the exact diagonalization of the Hamiltonian in second quantization,the low-lying energy levels for spin polarized system are obtained. The singlet-triplet oscillation in the ground state of the two-electron system showing up inthe result is explained due to the role of Coulomb interaction. The splitting ofthe lowest Landau level is another effect of the e-e interaction, which is alsoobserved in the results.
|
10 |
Equações de onda generalizadas e quantização funtorial para teorias de campo escalar livre / Generalized wave equations and functorial quantization for free scalar field theories.João Braga de Góes e Vasconcellos 07 April 2016 (has links)
Nesta dissertação apresentamos um método de quantização matemática e conceitualmente rigoroso para o campo escalar livre de interações. Trazemos de início alguns aspéctos importantes da Teoria de Distribuições e colocamos alguns pontos de geometria Lorentziana. O restante do trabalho é dividido em duas partes: na primeira, estudamos equações de onda em variedades Lorentzianas globalmente hiperbólicas e apresentamos o conceito de soluções fundamentais no contexto de equações locais. Em seguida, progressivamente construímos soluções fundamentais para o operador de onda a partir da distribuição de Riesz. Uma vez estabelecida uma solução para a equação de onda em uma vizinhança de um ponto da variedade, tratamos de construir uma solução global a partir da extensão do problema de Cauchy a toda a variedade, donde as soluções fundamentais dão lugar aos operadores de Green a partir da introdução de uma condição de contorno. Na última parte do trabalho, apresentamos um mínimo da Teoria de Categorias e Funtores para utilizar esse formalismo na contrução de um funtor de segunda quantização entre a categoria de variedades Lorentzianas globalmente hiperbólicas e a categoria de redes de álgebras C* satisfazendo os axiomas de Haag-Kastler. Ao fim, retomamos o caso particular do campo escalar quântico livre. / In this thesis we present a both mathematical and conceptually rigorous quantization method for the neutral scalar field free of interactions. Initially, we introduce some aspects of the Theory of Distributions and we establish some points of Lorentzian geometry. The rest of the work is divided in two parts: in the first one, we study wave equations on globally hyperbolic Lorentzian manifolds, hence presenting the concept of fundamental solutions within the context of locally defined wave equations. Next, we progressively construct fundamental solutions for the wave operator from the Riesz distribution. Once established a solution to the wave equation in a neighbourhood of a point of the manifold, we move forward to produce a global solution from the extension of the Cauchy problem to the whole manifold. At this stage, fundamental solutions are replaced by Green\'s operators by the imposition of appropriate boundary conditions. In the last part, we present a minimum on the Theory of Categories and Functors. This is followed by the use of this formalism in the development of a second-quantization functor between the category of Lorentzian globally hyperbolic manifolds and the category of nets of C*-algebras obeying Haag-Kastler axioms. Finally, we turn our attention to the particular case of the quantum free scalar field.
|
Page generated in 0.106 seconds