• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 11
  • 9
  • 7
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 111
  • 49
  • 45
  • 37
  • 33
  • 23
  • 21
  • 20
  • 19
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Desenvolvimento de uma bancada didática para estudo dos efeitos termoelétricos aplicados na engenharia

Izidoro, Cleber Lourenço January 2015 (has links)
O presente trabalho apresenta o desenvolvimento de uma bancada didática de baixo custo para estudo dos materiais termoelétricos para a realização de ensaios de obtenção de curvas de desempenho dos módulos termoelétricos no que se refere a geração de energia pelo Efeito Seebeck e resfriamento através do Efeito Peltier de forma a difundir os conhecimentos nas áreas afim em escolas de Engenharia, refletindo na compreensão dos princípios e funcionalidades destas tecnologias. O sistema proposto permite ler simultaneamente até 3 geradores termoelétricos, e é composto por dois principais circuitos eletrônicos: sendo um estágio aquisição de dados compostos por 3 canais para leitura de tensão, 3 canais para corrente e 6 canais para aquisição do sinal dos termopares (<400°C) além de sistema térmico que terá as funções de aquecimento e resfriamento. Os dados medidos são adquiridos para um computador com um software customizado a aplicação que permite o monitoramento das grandezas envolvidas (tensão, corrente, potência e temperatura) para acompanhamento do ensaio dos materiais termoelétricos, tanto por meio de uma indicação numérica como gráfica. O sistema de aquisição de dados possui precisa o para temperatura de ±2,5%, para tensão de ±2,5% e para corrente de ±1,5%. / The present work describes the development of a low cost didactic bench for Study of thermoelectric materials for performing obtaining performance curves testing of thermoelectric modules in regard to energy generation effect Seebeck and cooling via Peltier Effect order to disseminate knowledge in areas related to engineering schools, reflecting the understanding of the principles and features of these technologies. The proposed system can be read simultaneously up to 3 thermoelectric generators, and consists of two main electronic circuits: being a stage data acquisition composed of 3 channels for reading voltage and 3 channels for current using ACS712 instrumentation amplifiers and 6 channels signal acquisition thermocouples (<400 ° C) as well as thermal system will have the heating and cooling functions. The measured data is acquired to a computer with software developed in Delphi language, which allows monitoring of the quantities involved (voltage, current, power and temperature) to monitor the testing of thermoelectric materials, either through a digital display as a graphic . The data acquisition system has a temperature accuracy to ± 2,5% to ± 2.5% voltage and current of ± 1.5%.
52

Screen Printed Thermoelectric Devices

Willfahrt, Andreas January 2014 (has links)
Thermoelectric generators (TEG) directly convert heat energy into electrical energy. The impediments as to why this technology has not yet found extensive application are the low conversion efficiency and high costs per watt. On the one hand, the manufacturing process is a cost factor. On the other, the high-­‐priced thermoelectric (TE) materials have an enormous impact on the costs per watt. In this thesis both factors will be examined: the production process and the selection of TE materials. Technical screen printing is a possible way of production, because this method is very versatile with respect to the usable materials, substrates as well as printing inks. The organic conductor PEDOT:PSS offers reasonable thermoelectric properties and can be processed very well in screen printing. It was demonstrated by prototypes of fully printed TEGs that so-­‐called vertical printed TEGs are feasible using standard graphic arts industry processes. In addition, the problems that occur with print production of TEGs are identified. Finally, approaches to solve these problems are discussed.
53

Synthesis and Physical Properties Investigations of Intermetallic Clathrates

Stefanoski, Stevce 12 April 2010 (has links)
Intermetallic clathrates have long been of interest for materials science research. The promise these materials hold for useful applications ranges from thermoelectrics to photovoltaics and optoelectronics to potentially ultra-hard materials and magnetic cooling applications. Their unique physical properties are intimately related to their intriguing structural properties. Thus a fundamental understanding of the chemistry and physics of inorganic clathrates offers the possibility to assess their potential for use in the various applications mentioned above. The purpose of the current work is to expand the current knowledge of the synthetic routes for obtaining clathrate materials, their structural, chemical, and physical properties, particularly those that from in the type I, II and VIII crystal structures. New synthesis routes are presented and used for preparation of single crystals of Na8Si46 and Na24Si136. Single-crystal X-ray analysis, and resistivity, Seebeck coefficient and thermal conductivity measurements are presented. In addition, two "inverse" clathrates with compositions Sn24P19.3Br8 and Sn17Zn7P22Br8 have been characterized in terms of their transport properties. Since the magnetic refrigeration based on the magnetocaloric effect is a topic of great interest, type VIII Eu8Ga16Ge30 clathrates are also explored in terms of their application for magnetic cooling.
54

Thermoelectric Generators : A comparison of electrical power outputs depending on temperature.

Fransson, Erik, Olsson, Daniel January 2021 (has links)
Today many processes generate a lot of waste heat, for example industries or cars. One way to make this thermal energy useful is to transform it into electrical energy with a thermoelectric generator (TEG) or thermoelectric cooler (TEC). This technology is not used in any large scale today, but a lot of research is being done on the subject. The technology is based on the Seebeck effect and uses a temperature difference between two sides of an element to generate an electrical current. The reason that the research has gained more attention in recent years is because of the increasing electricity prices and the diminishing natural resources. Other benefits are that they run quietly and do not demand much maintenance.Another area where this technology could be useful is in off-grid cabins where it is easy to generate a lot of thermal energy by burning wood, but electrical energy is in high demand.In this thesis two different types of TEGs and one type of TEC are tested to investigate how much power they generate at different temperature differences, how well they meet the specified values in their respective data sheet and what their power per euro value is. For this, an experimental setup was made with:- An induction plate to increase the temperature on the hot side.- A CPU-fan, to reduce the temperature on the cold side.- Two temperature sensors (one for measuring the hot temperature and one for the cold one).- An electric circuit featuring a voltmeter, an amperemeter and an adjustable resistor (rheostat).The results show that, for this experiment the highest received power (6,38 W) comes from the medium-priced element but the highest power per euro comes from the lowest priced element (1,16 W/€). A quality problem for the lowest priced element was that parts of the solder melted when the temperature exceeded 225 °C. Another problem was that the induction plate was unable to provide enough heat for the most expensive of the elements to reach the temperature for which the retailer supplies their measured data.
55

Spin Thermal Transport in Magnetically Ordered and Disordered Materials

Zheng, Yuanhua January 2020 (has links)
No description available.
56

Strategies for tuning sensitivity to strain in sensors for flexible electronics

Xin, Yangyang 09 1900 (has links)
Significant developments in flexible/stretchable electronics are needed due to the increasing demand for stretchable sensors in soft robotics, prostheses, and human-machine interfaces. Stretchable strain sensors must be extremely sensitive to the applied strain in order to be used in monitoring human movement, tracking pulses, and identifying sounds. Percolated networks based on nanomaterials with intrinsic stretchability are primarily used to create large stretchable strain sensors with high sensitivity and stretchability. However, sensitivity and stretchability are two opposite faces of a coin, and these sensors face limited sensitivity both in tension and compression.The aforementioned drawbacks limit application such as large-scale deformable surface monitoring and effective e-skins for monitoring complex strain states. Pollution from strain, on the other hand, is a problem that must be avoided for other types of stretchable sensors. Strain-insensitive sensors are mostly based on the geometrical design with a complicated fabrication. New methods for developing strain-insensitive sensors based on percolated networks are urgently needed to simplify the fabrication process. Four objectives are listed to solve the problems as mentioned above: to develop a method to balance the stretchability and sensitivity; to design a stretchable strain sensor with whole range working ability; to create a strain insensitivity sensor different from the geometry design; to investigate the physical mechanism of the new method. In Chapter 2, a laser engraving method was used to increase the crack density in CNT paper, which successfully improved the stretchability while maintaining the high sensitivity. Then, in Chapter 3, a pre-stretching/releasing method was used to partially open the cracks in CNT paper in order to achieve sensitivity in both positive and negative strain. The Seebeck effect of percolated networks was then used to develop a strain-insensitive temperature sensor in Chapter 4. Finally, in Chapter 5, we performed a theoretical analysis to reveal the physical mechanism of the Seebeck coefficient’s stability in percolated networks.
57

Influence of strain and point defects on the Seebeck coefficient of thermoelectric CoSb3 : Inverkan av töjnings och punktdefekter på Seebeck-koefficienten för termoelektrisk CoSb3

Awala, Ibrahim January 2021 (has links)
Many studies and experiments have been conducted over the years to find solutions to the electricity problem. This issue is not just related to how fossil fuels are dispensed. Also, the environmental concerns associated with using fossil fuels have become a severe issue, which is a major cause of environmental pollution and ozone layer damage. As such, the need for energy becomes one of the essential goals. Therefore, research has begun to revolve around thermoelectrics, which is a straightforward approach for generating energy, by converting heat directly into electricity. Cobalt antimonide (CoSb3) belongs to a broad family of materials with the skutterudite structure, which have been recently identified as potential new thermoelectric materials with high performance. The CoSb3 is one of the numerous promising thermoelectric materials in the intermediate temperature range. The binary CoSb3 is a narrow bandgap semiconductor with a relatively flat band structure and excellent electrical performance. The thermoelectric performance efficiency of binary CoSb3 is measured by its figure of merit. The figure of merit is important for thermoelectric materials and is primarily governed by the Seebeck coefficient because it exhibits a square dependence. The Seebeck coefficient of the CoSb3 can be affected by many factors that can either increase or decrease it. Strain is an important aspect for the transport properties, including the Seebeck coefficient. The goal of this thesis project is to study the effect of point defects and strain on the Seebeck coefficient of skutterudite CoSb3. The binary CoSb3 skutterudite was explored through density functional theory (DFT) to calculate the ground-state properties, in particular the Seebeck coefficient. Two different CoSb3 structures were considered, an ideal one (without any defects) and the other was termed real (containing defects). In both cases, the Seebeck coefficient and its response were studied while strain was applied by changing the volume of the structure. The non-equilibrium Green's function was used within a DFT simulation to get a transmission distribution, where it was essential for calculating the Seebeck coefficient. Moreover, oxygen molecules were placed over the (001) surface of 2 × 2 × 1 CoSb3 supercell to establish if oxidation leads to point defect formation. These simulations were carried out by DFT-based molecular dynamics. It is found that the strain affects the Seebeck coefficient in the ideal structure. At compression, the absolute value of the Seebeck coefficient increases.  By contrast, the Seebeck coefficient changed its sign from negative to positive and increased to 894 μVK−1at tension, which was unexpected. The electron density distribution map was explored to explain the behavior of the Seebeck coefficient at equilibrium, compression, and tension. It can be seen that the electron distribution between Co and Sb is increased at compression, implying an increased orbital overlap (covalent interaction). By contrast, the tension reduces the electron distribution between Sb and Co. The real structure induced by oxidation exhibits Sb vacancies. The See-beck coefficient is affected differently than that of the ideal structure. At equilibrium, the Seebeck coefficient increases to 151 μVK−1. The electron density distribution between Sb and Co is enhanced in the real structure compared to the ideal one. The most drastic change is found at tension, where the Seebeck coefficient reaches−270 μVK−1. It may be speculated that this occurs due to O which increases the orbital overlap. The strategy introduced in this work, an interplay of defects and strain effects, may be beneficial for other thermoelectric materials.
58

SYNTHESIS AND INVESTIGATING THERMOELECTRIC CHARACTERISTICS OF THE RECuQ2 (RE= Pr, Sm, Gd, Dy, Er AND Q= Se, Te) / THERMOELECTRIC CHARACTERISTICS OF RARE-EARTH COPPER CHALCOGENIDES

Esmaeili, Mehdi 11 1900 (has links)
Results of this research are available online in two published papers. / The main focus of this research was to synthesize and then to characterize the potential high-performance thermoelectric materials. In this regard, we have prepared a series of pure RECuSe2 (with RE = Pr, Sm, Gd, Dy and Er) and RECuTe2 (with RE = Er, Dy and Gd) and analyzed their crystal structure, electronic and physical properties. We used powder and single crystal X-ray diffraction techniques to analyze their crystal structures and employed energy dispersive X-ray spectrometry (EDS) to verify their chemical compositions. The temperature stability of the synthesized samples was examined by differential thermal and gravimetrical analysis. The high-purity consolidated pellets were prepared for physical properties measurements. We analyzed the relationship between their crystal structures and pertinent electronic properties through the LMTO calculations. The RECuSe2 phases adopt two structures, monoclinic and trigonal. The monoclinic structure (P21/c, z = 4) is observed for lighter rare earths (RE = Pr, Sm and Gd) and Cu-disordered trigonal structure for heavier rare earths (P m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements indicate that the studied selenides are p-type semiconductors with relatively small activation energies (0.045-0.12 eV). However, their electrical resistivities are too high (0.49-220 Ohmcm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe2 phases. The synthesized RECuTe2 phases (RE = Er, Dy and Gd) adopt a monoclinic-distorted variant (C2/m, z = 2) of the trigonal structure (P m1, Z= 1) observed for the RECuSe2 (with RE = Dy, Er). While such disorder may be beneficial for lowering their thermal conductivity, large values of electrical resistivity (0.02-0.87 Ohmcm at room temperature) make these phases unsuitable for practical applications. Comparing to the corresponding semiconducting selenides, the tellurides have lower resistivities, and display a metallic type resistivity. Such behavior stems from the closure of band gaps, which is verified by the electronic structures calculations. Structurally the RECuTe2 phases (with RE = Er, Dy and Gd) are similar to RECuSe2 with the P m1 structure. The monoclinic distortion in RECuTe2 is driven by Cu displacement inside the larger tetrahedral voids in the hexagonal close packing of the Te atoms. Most likely, Cu shifts to one side of the Te tetrahedra to optimize the Cu-Te interactions. / Thesis / Candidate in Philosophy
59

Formation Mechanism and Thermoelectric Energy Conversion of Titanium Dioxide Nanotube Based Multi-Component Materials and Structures

Su, Lusheng 25 November 2013 (has links)
No description available.
60

Thermoelectric Properties of Carbon Nanotubes (CNT) - Fibroin Composites

Enyinnaya, Chukwuka January 2022 (has links)
No description available.

Page generated in 0.0377 seconds