• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 11
  • 9
  • 7
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 111
  • 49
  • 45
  • 37
  • 33
  • 23
  • 21
  • 20
  • 19
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Nanomatériaux pour applications thermoélectriques / Nanomatetials for thermoelectric applications

Vo, Thi Thanh Xuan 17 September 2015 (has links)
Les nano-composés de type Sn1-xTaxO2 (0 ≤ x ≤ 0,03) ont été étudiés en vue de leurs propriétés thermoélectriques. Une méthode de co-précipitation a été utilisée pour synthétiser des nano-poudres ayant une taille des grains moyenne d’environ 3 nm. L’étude structurale et microstructurale a suggéré une limite de solubilité pour le Ta de 0,008 ≤ x < 0,010. Ces nano-poudres ont été ensuite densifiées par Spark Plasma Sintering, avec des compacités atteignant ~ 95%. Le dopage en Ta a permis une amélioration des propriétés thermoélectriques du SnO2 et, en accord avec la limite de solubilité, une valeur maximale du facteur de mérite de 4,7x10-5 K-1 a été observée pour l’échantillon x = 0,008. De plus, nous avons démontré qu’une diminution de la taille des grains permettait d’améliorer le coefficient Seebeck, de diminuer la conductivité thermique, mais conduisait à une diminution de la conductivité électrique. La stabilité des oxydes, notamment à l'échelle nanométrique, est remise en question par des caractérisations physico-chimiques. Partant de ces matériaux à base de SnO2, un nano-composite (ZnO-SnO2) a été étudié. Le composé Zn1-xGdxO (0 ≤ x ≤ 0,03) a été préparé par la méthode de Péchini et caractérisé en comparant avec d’autres matériaux à base de ZnO. Un premier test de nano-composite M30 (30% en masse Sn0.996Ta0.004O2 et 70% en masse Zn0.997Gd0.003O) a été mené. Le résultat obtenu a montré qu’une concentration de nano-inclusion Sn0.996Ta0.004O2 de 30 % ne permettait pas d’améliorer les propriétés thermoélectriques du nano-composite M30, par rapport aux matériaux de départ. / The nano-compound Sn1-xTaxO2 (0 ≤ x ≤ 0.03) was studied with a view to their thermoelectric properties. A method of co-precipitation was used to synthesize nano-powders having an average grain size of about 3 nm. The structural and microstructural study suggested a solid solubility limit of 0.008 ≤ x < 0.010. These nano-powders were then densified by Spark Plasma Sintering, with density reaching ~ 95%. The doping of Ta improved the thermoelectric properties, and in good agreement with the solubility limit, a maximum value of the factor of merit of 4.7x10-5 K-1 was observed for the sample x = 0.008. The stability of oxides, particularly at the nanoscale, is questioned by physicochemical characterizations. From these SnO2-based materials, a nano-composite (ZnO-SnO2) was studied. The compound Zn1-xGdxO (0 ≤ x ≤ 0.03) was prepared by the method of Pechini and characterized by comparing with other ZnO-based materials. A first test of nano-composite M30 (30 wt% Sn0.996Ta0.004O2 and 70 wt% Zn0.997Gd0.003O) was conducted. The result showed that a concentration of 30% nano-inclusion Sn0.996Ta0.004O2 did not allow to improve the thermoelectric properties of nano-composite M30, compared to the starting materials.
72

Molecular Doping of Organic Semiconductors: A Conductivity and Seebeck Study

Menke, Torben 19 July 2013 (has links)
This work aims at improving the understanding of the fundamental physics behind molecular doping of organic semiconductors, being a requirement for efficient devices like organic light-emitting diodes (OLED) and organic photovoltaic cells (OPV). The underlying physics is studied by electrical conductivity and thermoelectrical Seebeck measurements and the influences of doping concentration and temperature are investigated. Thin doped layers are prepared in vacuum by thermal co-evaporation of host and dopant molecules and measured in-situ. The fullerene C60, known for its high electron mobility, is chosen as host for five different n-dopants. Two strongly ionizing air-sensitive molecules (Cr2(hpp)4 and W2(hpp)4) and three air-stable precursor compounds (AOB, DMBI-POH and o-MeO-DMBI-I) which form the active dopants upon deposition are studied to compare their doping mechanism. High conductivities are achieved, with a maximum of 10.9 S/cm. Investigating the sample degradation by air-exposure, a method for regeneration is proposed, which allows for device processing steps under ambient conditions, greatly enhancing device fabrication possibilities. Various material combinations for p-doping are compared to study the influence of the molecular energy levels of host (MeO-TPD and BF-DPB) and dopant (F6-TCNNQ and C60F36). Corrections for the only estimated literature values for the dopant levels are proposed. Furthermore, the model system of similar-sized host pentacene and dopant F4-TCNQ is studied and compared to theoretical predictions. Finally, a model is developed that allows for estimating charge carrier mobility, density of free charge carriers, doping efficiency, as well as the transport level position from combining conductivity and Seebeck data.:1 Introduction 2 Fundamentals of Organic Semiconductors 2.1 Conventional Semiconductors 2.2 Organic Semiconductors 2.3 Seebeck Effect 2.4 Correlation of Seebeck Coefficient and Charge Carrier Density 3 Experimental 3.1 Seebeck Setup 3.2 Materials 4 Air-Sensitive n-Dopants in C60 4.1 Conductivity 4.2 Thermoelectric Measurements 4.3 Morphology 4.4 Degradation 4.5 Conclusion 5 Air-Stable n-Dopants in C60 5.1 Conductivity 5.2 Thermoelectric Measurements 5.3 Morphology 5.4 Conclusion for AOB and DMBI-POH 5.5 o-MeO-DMBI-I 6 p-Dopants in Amorphous Hosts 6.1 Conductivity 6.2 Thermoelectric Measurements 6.3 Degradation 6.4 Conclusion 7 Pentacene p-Doped by F4-TCNQ 7.1 Conductivity Changes after Preparation 7.2 Relation of Conductivity to Doping Concentration 7.3 Comparison of Seebeck Energy and Activation Energy 7.4 Conclusion 8 Estimating the Doping Efficiency and the Mobility 8.1 Lower Limit of the Mobility 8.2 Lower Limit of the Doping Efficiency 8.3 Conclusions from Seebeck Measurements 8.4 Assuming a Constant Transport Level 8.5 Applying the Models to p-Doped Data 8.6 Conclusion 9 Summary and Outlook 9.1 Summary 9.2 Outlook / Diese Arbeit untersucht organische Halbleiter und den Einfluss von molekularer Dotierung auf deren elektrische Eigenschaften, mit dem Ziel effizientere Bauelemente wie organische Leuchtdioden oder Solarzellen zu ermöglichen. Mittels Leitfähigkeitsuntersuchungen sowie thermoelektrischen Seebeck-Messungen werden die Einflüsse der Dotierkonzentration sowie der Temperatur auf die elektrischen Eigenschaften dünner dotierter Schichten analysiert. Das Abscheiden der Schichten durch Koverdampfen im Vakuum ermöglicht eine in-situ Analyse. Das Fulleren C60, bekannt für besonders hohe Elektronenbeweglichkeit, wird als Wirt für fünf verschieden n-Dotanden, zwei extrem stark ionisierende luftreaktive (Cr2(hpp)4 und W2(hpp)4) sowie drei luftstabile (AOB, DMBI-POH und o-MeO-DMBI-I), verwendet. Dies ermöglicht Schlüsse auf die unterschiedlichen zugrunde liegenden Dotiermechanismen und das Erreichen von Leitfähigkeiten von bis zu 10.9 S/cm. Für einen der luftreaktiven Dotanden wird die Probendegradation an Luft untersucht und eine Regenerationsmethode aufgezeigt, die Prozessierungsschritte in Luft erlaubt und somit entscheidend für zukünftige Bauelementfertigung sein könnte. Verschiedene p-dotierte Materialkombinationen werden untersucht, um den Einfluss der molekularen Energieniveaus von Wirt (MeO-TPD und BF-DPB) und Dotand (F6-TCNNQ und C60F36) auf die Dotierung zu studieren. Dies ermöglicht Schlussfolgerungen auf die in der Literatur bisher nur abgeschätzten Energieniveaus dieser Dotanden. Ferner werden die Eigenschaften des bereits theoretisch modellierten Paares Pentacen und F4-TCNQ mit den Vorhersagen verglichen und die Abweichungen diskutiert. Abschießend wird ein Modell entwickelt, das die Abschätzung von Dotiereffizienz, Ladungsträgerkonzentration, Ladungsträgerbeweglichkeit sowie der Position des Transportniveaus aus Leitfähigkeits- und Seebeck-Messungen erlaubt.:1 Introduction 2 Fundamentals of Organic Semiconductors 2.1 Conventional Semiconductors 2.2 Organic Semiconductors 2.3 Seebeck Effect 2.4 Correlation of Seebeck Coefficient and Charge Carrier Density 3 Experimental 3.1 Seebeck Setup 3.2 Materials 4 Air-Sensitive n-Dopants in C60 4.1 Conductivity 4.2 Thermoelectric Measurements 4.3 Morphology 4.4 Degradation 4.5 Conclusion 5 Air-Stable n-Dopants in C60 5.1 Conductivity 5.2 Thermoelectric Measurements 5.3 Morphology 5.4 Conclusion for AOB and DMBI-POH 5.5 o-MeO-DMBI-I 6 p-Dopants in Amorphous Hosts 6.1 Conductivity 6.2 Thermoelectric Measurements 6.3 Degradation 6.4 Conclusion 7 Pentacene p-Doped by F4-TCNQ 7.1 Conductivity Changes after Preparation 7.2 Relation of Conductivity to Doping Concentration 7.3 Comparison of Seebeck Energy and Activation Energy 7.4 Conclusion 8 Estimating the Doping Efficiency and the Mobility 8.1 Lower Limit of the Mobility 8.2 Lower Limit of the Doping Efficiency 8.3 Conclusions from Seebeck Measurements 8.4 Assuming a Constant Transport Level 8.5 Applying the Models to p-Doped Data 8.6 Conclusion 9 Summary and Outlook 9.1 Summary 9.2 Outlook
73

Heteroepitaxy, surface- and bulk hole transport, and application of the p-type semiconducting oxides NiO and SnO

Budde, Melanie 21 December 2020 (has links)
Die vorliegende Arbeit ist eine umfassende Studie über das Wachstum mittels Molekularstrahlepitaxie (MBE) und die gemessenen Seebeck Koeffizienten und Lochtransport Eigenschaften von p‑Typ Oxiden, eine Materialklasse welche die optische Transparenz und die einstellbare Leitfähigkeit verbindet. Insbesondere, Nickeloxid (NiO) und Zinnmonoxid (SnO) wurden mittels plasmaunterstützter MBE unter Einsatz von einer Metall‑Effusionszelle und einem Sauerstoffplasma gewachsen. Für das NiO Wachstum wurden vor allem die Wachstumsgrenzen bei hohen Temperaturen festgelegt, welche von der Substratstabilität im Falle von Magnesiumoxid und Galliumnitrid abhängen. Es wird die Möglichkeit der Qualitätsbewertung mittels Ramanspektroskopie für Natriumchlorid-Strukturen gezeigt. Untersuchung der NiO Dotierung durch Oberflächen-Akzeptoren und der damit verbundenen Oberflächen‑Loch‑Anreicherungsschicht offenbart eine neue Dotierungsmöglichkeit für p‑leitende Oxide im Allgemeinen. Die metastabile Phase des SnO wird mittels PAMBE unter Verwendung bekannter Wachstumskinetik von Zinndioxid und verschiedener in‑situ Methoden stabilisiert, die anwendungsrelevante thermische Stabilität wird untersucht. Anschließende ex‑situ Charakterisierungen durch XRD und Ramanspektroskopie identifizieren das kleine Wachstumsfenster für das epitaktische Wachstum von SnO. Elektrische Messungen bestätigen die p‑Typ Ladungsträger mit vielversprechenden Löcherbeweglichkeiten welche auch für Hall Messungen zugänglich sind. Temperaturabhängige Hall Messungen zeigen einen bandähnlichen Transport welcher auf eine hohe Qualität der gewachsenen Schichten hindeutet. Die Funktionalität der gewachsenen Schichten wird durch verschiedene Anwendungen nachgewiesen. Zum Beispiel werden pn‑Heteroübergänge wurden durch das heteroepitaktische Wachstum der SnO Schichten auf einem Galliumoxid-Substrat erlangt. Die ersten bisher berichteten SnO-basierten pn‑Übergänge mit einem Idealitätsfaktor unter zwei wurden erreicht. / This thesis presents a comprehensive study on the growth by molecular beam epitaxy (MBE) and the measured Seebeck coefficients and hole transport properties of p‑type oxides, a material class which combines transparency and tunable conductivity. Specifically, Nickel oxide (NiO) and tin monoxide (SnO) were grown by plasma‑assisted MBE using a metal effusion cell and an oxygen plasma. For NiO growth, the focus lies on high temperature growth limits which were determined by the substrate stability of magnesium oxide and gallium nitride. Quality evaluation by Raman spectroscopy for rock‑salt crystal structures is demonstrated. Investigations of NiO doping by surface acceptors and the related surface hole accumulation layer reveal a new doping possibility for p‑type oxides in general. The meta‑stable SnO is stabilized by PAMBE utilizing known growth kinetics of tin dioxide and various in‑situ methods, its application-relevant thermal stability is investigated. Following ex‑situ characterizations by XRD and Raman spectroscopy identify secondary phases and a small growth window for the epitaxial growth of SnO. Electrical measurements confirm the p‑type carriers with promising hole mobilities accessible to Hall measurements. Temperature dependent Hall measurements show band‑like transport indicating a high quality of the grown layers. The functionality of the grown layers is proven by various applications. For example, pn‑heterojunctions were achieved by heteroepitaxial growth of the SnO layers on gallium oxide substrates. The first reported SnO based pn‑junction with an ideality factor below two is accomplished.
74

Nanolaminated Thin Films for Thermoelectrics

Kedsongpanya, Sit January 2010 (has links)
<p>Energy harvesting is an interesting topic for today since we face running out of energy source, a serious problem in the world. Thermoelectric devices are a good candidate. They can convert heat (i.e. temperature gradient) to electricity. This result leads us to use them to harvest waste heat from engines or in power plants to generate electricity. Moreover, thermoelectric devices also perform cooling by applied voltage to device. This process is clean, which means that no greenhouse gases are emitted during the process. However, the converting efficiency of thermoelectrics are very low compare to a home refrigerator. The thermoelectric figure of merit (ZT<sub>m</sub>) is a number which defines the converting efficiency of thermoelectric materials and devices. ZT<sub>m</sub> is defined by Seebeck coefficient, electrical conductivity and thermal conductivity. To improve the converting efficiency, nanolaminated materials are good candidate.</p><p> </p><p>This thesis studies TiN/ScN artificial nanolaminates, or superlattices were grown by reactive dc magnetron sputtering from Ti and Sc targets. For TiN/ScN superlattice, X-ray diffraction (XRD) and reciprocal space map (RSM) show that we can obtain single crystal TiN/ScN superlattice. X-ray reflectivity (XRR) shows the superlattice films have a rough surface, supported by transmission electron microscopy (TEM). Also, TiN/ScN superlattices grew by TiN as starting layer has better crystalline quality than ScN as starting layer. The electrical measurement shows that our superlattice films are conductive films.</p><p> </p><p>Ca-Co-O system for inherently nanolaminated materials were grown by reactive rf magnetron sputtering from Ca/Co alloy target. The XRD shows we maybe get the [Ca<sub>2</sub>CoO<sub>3</sub>]<sub>x</sub>CoO<sub>2</sub> phase, so far. The energy dispersive X-ray spectroscopy (EDX) reported that our films have Al conmination. We also discovered unexpected behavior when the film grown at high temperature showed larger thickness instead of thinner, which would have been expected due to possible Ca evaporation. The Ca-Co-O system requires further studies.</p>
75

Transport thermoélectrique dans des contacts quantiques ponctuels et de cavités chaotiques: effets thermiques et fluctuations

Abbout, Adel 21 December 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse au transport quantique des électrons dans des nano-systèmes et des cavités chaotiques . En particulier, on apporte dans un premier temps la base théorique qui permet d'expliquer les expériences de microscopie à effet de grille dans des contacts quantiques ponctuels.
76

High-temperature thermoelectric properties of Ca0.9−xSrxYb0.1MnO3−delta (0<=x<=0.2)

Kosuga, Atsuko, Isse, Yuri, Wang, Yifeng, Koumoto, Kunihito, Funahashi, Ryoji 13 May 2009 (has links)
No description available.
77

Nanolaminated Thin Films for Thermoelectrics

Kedsongpanya, Sit January 2010 (has links)
Energy harvesting is an interesting topic for today since we face running out of energy source, a serious problem in the world. Thermoelectric devices are a good candidate. They can convert heat (i.e. temperature gradient) to electricity. This result leads us to use them to harvest waste heat from engines or in power plants to generate electricity. Moreover, thermoelectric devices also perform cooling by applied voltage to device. This process is clean, which means that no greenhouse gases are emitted during the process. However, the converting efficiency of thermoelectrics are very low compare to a home refrigerator. The thermoelectric figure of merit (ZTm) is a number which defines the converting efficiency of thermoelectric materials and devices. ZTm is defined by Seebeck coefficient, electrical conductivity and thermal conductivity. To improve the converting efficiency, nanolaminated materials are good candidate.   This thesis studies TiN/ScN artificial nanolaminates, or superlattices were grown by reactive dc magnetron sputtering from Ti and Sc targets. For TiN/ScN superlattice, X-ray diffraction (XRD) and reciprocal space map (RSM) show that we can obtain single crystal TiN/ScN superlattice. X-ray reflectivity (XRR) shows the superlattice films have a rough surface, supported by transmission electron microscopy (TEM). Also, TiN/ScN superlattices grew by TiN as starting layer has better crystalline quality than ScN as starting layer. The electrical measurement shows that our superlattice films are conductive films.   Ca-Co-O system for inherently nanolaminated materials were grown by reactive rf magnetron sputtering from Ca/Co alloy target. The XRD shows we maybe get the [Ca2CoO3]xCoO2 phase, so far. The energy dispersive X-ray spectroscopy (EDX) reported that our films have Al conmination. We also discovered unexpected behavior when the film grown at high temperature showed larger thickness instead of thinner, which would have been expected due to possible Ca evaporation. The Ca-Co-O system requires further studies.
78

Thin films for thermoeletric applications

Lin, Keng-Yu January 2014 (has links)
Global warming and developments of alternative energy technologies have become important issues nowadays. Subsequently, the concept of energy harvesting is rising because of its ability of transferring waste energy into usable energy. Thermoelectric devices play a role in this field since there is tremendous waste heat existing in our lives, such as heat from engines, generators, stoves, computers, etc. Thermoelectric devices can extract the waste heat and turn them into electricity. Moreover, the reverse thermoelectric phenomenon has the function of cooling which can be applied to refrigerator or heat dissipation for electronic devices. However, the energy conversion efficiency is still low comparing to other energy technologies. The efficiency is judged by thermoelectric figure of merit (ZT), defined by Seebeck coefficient, electrical conductivity and thermal conductivity. In order to improve ZT, thin film materials are good candidates because of their structural effects on altering ZT.    Ca3Co4O9 thin films grown by reactive radio frequency magnetron sputtering followed by post-annealing process is studied in this thesis. Structural properties of the films with the evolution of elemental ratio (Ca/Co) of calcium and cobalt have been investigated. For the investigations, three samples having elemental ratio 0.82, 0.72, and 0.66 for sample CCO1, CCO2 and COO3, respectively, have been prepared. Structural properties of the films have been investigated by X-ray diffraction (XRD) θ-2θ and pole figure analyses. Surface morphology of the films has been investigated by scanning electron microscopic (SEM) analyses. The highly oriented and phase pure epitaxial Ca3Co4O9 thin films were obtained in the end.   Mixing of ScN and CrN to obtain ScxCr1-xN solid solution thin films by DC magnetron sputtering is the other task in this thesis. Growth of ScN and CrN thin films were studied first in order to get the best mixed growth conditions. The phase shifts between ScN (111) and CrN (111) peaks were observed in mixed growth films by XRD θ-2θ measurements, indicating the formation of ScxCr1-xN. Surface morphology of the films were investigated by SEM. The (111)-oriented ScxCr1-xN thin films with decent surface smoothness grown by DC magnetron sputtering at 600 °C in pure nitrogen with bias were developed.
79

Thermoelectric Effects In Mesoscopic Physics

Cipiloglu, Mustafa Ali 01 January 2004 (has links) (PDF)
The electrical and thermal conductance and the Seebeck coefficient are calculated for one-dimensional systems, and their behavior as a function of temperature and chemical potential is investigated. It is shown that the conductances are proportional to an average of the transmission probability around the Fermi level with the average taken for the thermal conductance being over a wider range. This has the effect of creating less well-defined plateaus for thermal-conductance quantization experiments. For weak non-linearities, the charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. Also, it is shown that the linear thermal conductance of a quantum point contact displays a half-plateau structure, almost flat regions appearing around half-integer multiples of the conductance quantum. This structure is investigated for the saddle-potential model.
80

Optoelectronic characterization of hot carriers solar cells absorbers / Caractérisation optoélectronique d'absorbeurs pour cellules photovoltaïques à porteurs chauds

Rodière, Jean 29 September 2014 (has links)
La cellule photovoltaïque à porteurs chauds est un dispositif de conversion de l’énergie solaire en énergie électrique dont les rendements théoriques approchent les 86%. Additionnellement à une cellule photovoltaïque standard, ce dispositif permet de convertir l’excédent d’énergie cinétique des porteurs photogénérés, en énergie électrique. Pour cela, le phénomène de thermalisation doit être réduit et des contacts électriques sélectifs en énergie ajoutés. Afin de déterminer les performances potentielles des absorbeurs, tout en surmontant le défi de fabrication des contacts électriques sélectifs, un montage et une méthode de cartographie d’intensité absolue de photoluminescence résolue spectralement ont été utilisés. Ceci a permis d’obtenir la température d’émission et la séparation des quasi-niveaux de Fermi, les deux grandeurs thermodynamiques caractéristiques de la performance des absorbeurs. Dans cette étude, des absorbeurs à base de puits quantiques d’InGaAsP sur substrat d’InP sont utilisés. Les grandeurs thermodynamiques sont estimées et la technique de caractérisation utilisée permet l’accès à des grandeurs tel que le facteur de thermalisation mais aussi un coefficient thermoélectrique, appelé photo-Seebeck. L’analyse quantitative de porteurs chauds dans des conditions pertinentes pour le photovoltaïque est une première ; le dispositif étudié permettrait de dépasser la limite de Schockley-Queisser. Enfin, le dispositif étant muni de contacts des caractérisations électriques sont faites et comparé aux mesures optiques. Afin de mieux comprendre l’évolution des grandeurs thermodynamiques étudiées, une première simulation est proposée. / The hot carrier solar cell is an energy conversion device where theoretical conversion efficiencies reach almost 86%. Additionally to a standard photovoltaic cell, the device allows the conversion of kinetic energy excess of photogenerated carriers into electrical energy. To achieve this, the thermalisation process must be limited and electrical energy selective contacts added. In order to determine potential absorber performances and overcome the fabrication challenge of energy selective contacts, a set-up and the related method of mapping absolute photoluminescence spectra were used. This technique allows getting quasi-Fermi levels splitting and temperature of emission, both thermodynamic quantities characteristic of the performance of the absorbers. In this study, absorbers based on InGaAsP multiquantum wells on InP substrate were used. The thermodynamic quantities are determined and allow to access at quantities such as thermalisation rate but also a thermoelectric coefficient, so-called Photo-Seebeck. The quantitative analysis of the hot carriers regime, in relevant conditions for photovoltaic is a first: the analysed device indicates a potential photovoltaic conversion over the Schockley-Queisser limit. At last, as the device is supplied with electrical contacts, electrical characterization are made and compared to optical measurements. A first simulation is proposed to better understand the thermodynamic quantities evolution as a function of the electrical bias.

Page generated in 0.0419 seconds