• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo de componentes das vias de biossíntese e inserção de selenocisteína em Naegleria gruberi: Selenofosfato Sintetase e tRNASec / A study of components of the selenocysteine´s biosynthesis and insertion pathways in Naegleria gruberi: Selenophosphate Synthetase and tRNASec

Santos, Thomás Michelena 01 February 2018 (has links)
O vigésimo primeiro aminoácido, selenocisteína (Sec), representa a principal forma biológica disponível de selênio, micronutriente essencial. A Sec possui vias de síntese distintas para bactérias, arqueobactérias e eucariotos, justificando estudos que avaliem sua particular consequência evolutiva. Naegleria gruberi, alvo do presente estudo, é um organismo modelo bastante interessante para compreensão das vias de síntese e incorporação do aminoácido em um dos três domínios da vida, por tratar-se de um eucarioto basal. A presença da via de biossíntese e incorporação de selenocisteína em N. gruberi foi descrita. Dentre os genes identificados, destaca-se uma Selenofosfato Sintetase ou SPS. A SPS possui um papel central na via de biossíntese de Sec, estando envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, forma orgânica de selênio. A SPS de N. gruberi apresenta dois domínios distintos: o domínio C-terminal, que possui identidade com SPSs de bactérias (SelD) e o domínio N-terminal, similar a metiltransferases de eucariotos. Além disso, foi identificado no protozoário um análogo ao gene SelC de procariotos, responsável pela expressão de tRNASec. SelC promove a inserção da selenocisteína em selenoproteínas no códon UGA, que na maioria das vezes é interpretado como códon de parada de tradução em mRNAs. Além deste, dados experimentais apontam para a existência de outro tRNA traduzindo o códon UGA, sugerindo duas possíveis hipóteses: trata-se de um tRNASec adicional para incorporação de Sec, ou de um tRNA carreador de outro aminoácido, com a capacidade de reconhecer o mesmo códon. Este estudo realizou a expressão e purificação do domínio N-terminal da proteína SPS de Naegleria gruberi e procurou realizar estudos imunoquímicos com a proteína a partir da produção de anticorpos policlonais. Além disso, foram realizados o isolamento e purificação das duas diferentes isoformas de tRNASec identificadas no organismo a partir de ferramentas de bioinformática. Por último, foi dado início à uma investigação para determinar genes de referência para a realização de experimentos de qPCR em N. gruberi. Estes resultados contribuem para o entendimento da via de biossíntese de Sec em eucariotos e sua importância para o metabolismo celular. / The twenty-first amino acid, selenocysteine (Sec), represents the main biologically available form of selenium, an essential micronutrient, and shows different synthesis pathways for bacteria, archeobacteria and eukaryotes, justifying new studies to evaluate its particular evolutionary consequence. Naegleria gruberi is an extremely interesting model organism for the comprehension of the amino acid´s synthesis and incorporation pathways in one of the three domains of life, due to its position in the evolutionary scale as a basal eukaryote. The presence of the selenocysteine´s biosynthesis and insertion pathways in N. gruberi has been described. Amongst the identified genes, a Selenophosphate Synthetase or SPS has a central role. SPS acts on the biosynthesis of Sec, catalyzing the conversion of selenide and adenosine 5´-triphosphate (ATP) into selenophosphate, an organic form of selenium. N. gruberi´s SPS shows two distinct domains: a C-terminal domain having identity with bacterial SPSs (SelD) and a N-terminal domain, similar to eukaryotic methyltransferases. Besides that, an analogous to the SelC gene of prokaryotes was identified in the protozoan. SelC promotes the insertion of selenocysteine in selenoproteins on the UGA codon, a codon which is most of the time interpreted as a stop codon in mRNAs. Experimental data show evidence for the existence of yet another tRNA translating the UGA codon, suggesting two possible hypotheses: this tRNA is either the carrier of another amino acid with the capacity of recognizing the same codon, or an additional tRNA for Sec incorporation with different characteristics. The experiments performed for this study were able to heterologously express and purify the N-terminal domain of Naegleria gruberi´s SPS and pursued to characterize the protein through immunoassays using polyclonal antibodies. More experiments were run to isolate and purify the two different isoforms of tRNA identified in the organism using bioinformatics tools. Finally, an investigation was started aiming at determining reference genes for qPCR experiments with N. gruberi. These results contribute to a better understanding of the Sec´s biosynthesis and insertion pathways in eukaryotes and their importance for the cellular metabolism.
2

Estudo de componentes das vias de biossíntese e inserção de selenocisteína em Naegleria gruberi: Selenofosfato Sintetase e tRNASec / A study of components of the selenocysteine´s biosynthesis and insertion pathways in Naegleria gruberi: Selenophosphate Synthetase and tRNASec

Thomás Michelena Santos 01 February 2018 (has links)
O vigésimo primeiro aminoácido, selenocisteína (Sec), representa a principal forma biológica disponível de selênio, micronutriente essencial. A Sec possui vias de síntese distintas para bactérias, arqueobactérias e eucariotos, justificando estudos que avaliem sua particular consequência evolutiva. Naegleria gruberi, alvo do presente estudo, é um organismo modelo bastante interessante para compreensão das vias de síntese e incorporação do aminoácido em um dos três domínios da vida, por tratar-se de um eucarioto basal. A presença da via de biossíntese e incorporação de selenocisteína em N. gruberi foi descrita. Dentre os genes identificados, destaca-se uma Selenofosfato Sintetase ou SPS. A SPS possui um papel central na via de biossíntese de Sec, estando envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, forma orgânica de selênio. A SPS de N. gruberi apresenta dois domínios distintos: o domínio C-terminal, que possui identidade com SPSs de bactérias (SelD) e o domínio N-terminal, similar a metiltransferases de eucariotos. Além disso, foi identificado no protozoário um análogo ao gene SelC de procariotos, responsável pela expressão de tRNASec. SelC promove a inserção da selenocisteína em selenoproteínas no códon UGA, que na maioria das vezes é interpretado como códon de parada de tradução em mRNAs. Além deste, dados experimentais apontam para a existência de outro tRNA traduzindo o códon UGA, sugerindo duas possíveis hipóteses: trata-se de um tRNASec adicional para incorporação de Sec, ou de um tRNA carreador de outro aminoácido, com a capacidade de reconhecer o mesmo códon. Este estudo realizou a expressão e purificação do domínio N-terminal da proteína SPS de Naegleria gruberi e procurou realizar estudos imunoquímicos com a proteína a partir da produção de anticorpos policlonais. Além disso, foram realizados o isolamento e purificação das duas diferentes isoformas de tRNASec identificadas no organismo a partir de ferramentas de bioinformática. Por último, foi dado início à uma investigação para determinar genes de referência para a realização de experimentos de qPCR em N. gruberi. Estes resultados contribuem para o entendimento da via de biossíntese de Sec em eucariotos e sua importância para o metabolismo celular. / The twenty-first amino acid, selenocysteine (Sec), represents the main biologically available form of selenium, an essential micronutrient, and shows different synthesis pathways for bacteria, archeobacteria and eukaryotes, justifying new studies to evaluate its particular evolutionary consequence. Naegleria gruberi is an extremely interesting model organism for the comprehension of the amino acid´s synthesis and incorporation pathways in one of the three domains of life, due to its position in the evolutionary scale as a basal eukaryote. The presence of the selenocysteine´s biosynthesis and insertion pathways in N. gruberi has been described. Amongst the identified genes, a Selenophosphate Synthetase or SPS has a central role. SPS acts on the biosynthesis of Sec, catalyzing the conversion of selenide and adenosine 5´-triphosphate (ATP) into selenophosphate, an organic form of selenium. N. gruberi´s SPS shows two distinct domains: a C-terminal domain having identity with bacterial SPSs (SelD) and a N-terminal domain, similar to eukaryotic methyltransferases. Besides that, an analogous to the SelC gene of prokaryotes was identified in the protozoan. SelC promotes the insertion of selenocysteine in selenoproteins on the UGA codon, a codon which is most of the time interpreted as a stop codon in mRNAs. Experimental data show evidence for the existence of yet another tRNA translating the UGA codon, suggesting two possible hypotheses: this tRNA is either the carrier of another amino acid with the capacity of recognizing the same codon, or an additional tRNA for Sec incorporation with different characteristics. The experiments performed for this study were able to heterologously express and purify the N-terminal domain of Naegleria gruberi´s SPS and pursued to characterize the protein through immunoassays using polyclonal antibodies. More experiments were run to isolate and purify the two different isoforms of tRNA identified in the organism using bioinformatics tools. Finally, an investigation was started aiming at determining reference genes for qPCR experiments with N. gruberi. These results contribute to a better understanding of the Sec´s biosynthesis and insertion pathways in eukaryotes and their importance for the cellular metabolism.
3

Estudo celular, bioquímico e biofísico da enzima selenofosfato sintetase de Naegleria gruberi / Biochemical, biophysical and cellular studies of selenophosphate synthetase from Naegleria gruberi

Bellini, Natalia Karla 16 July 2015 (has links)
O microrganismo alvo deste estudo pertence ao gênero Naegleria, que compreende amebas de vida livre amplamente distribuídas ao redor do mundo. Estas possuem estratégias de adaptação em condições de temperatura e pH que envolvem a diferenciação das células para as formas flagelada e cística. A via de biossíntese e incorporação do aminoácido selenocisteína (Sec, U) em N. gruberi foi descrita e, devido à incorporação co-traducional deste aminoácido em resposta a um códon UGA em fase de leitura, possui diversos fatores específicos que tornam a via alvo de estudos moleculares. Dentre os genes identificados, destaca-se o de selenofosfato sintetase (SPS), uma proteína funcionalmente dimérica envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, essencial à síntese de Sec. Diferindo das SPSs homólogas, em N. gruberi a proteína (NgSPS2) é codificada em fusão N-terminal com uma metiltransferase e totaliza 737 aminoácidos. Esta descoberta motivou os objetivos da pesquisa baseada na investigação celular de NgSPS2 nativa nas três diferentes formas de vida de N. gruberi através de ensaios imunoenzimáticos, e a caracterização bioquímica e biofísica da proteína recombinante. A análise dos resultados obtidos por Western blot indicaram que NgSPS2, in vivo, apresenta os dois domínios metiltransferase e SPS separados após a tradução para uma cultura amebóide e, após alcançar a diferenciação de cada uma das formas isoladamente, este resultado se confirmou também para cistos e flagelados. A investigação de N. gruberi em cultura indica o aumento na atividade da via de síntese de selenoproteínas na presença de selênio conferindo resistência às condições de estresse oxidativo. A caracterização bioquímica do domínio C-terminal de NgSPS2, por cromatografia de exclusão molecular analítica e eletroforese não desnaturante, revelou predominância de dímeros em solução, coerente com SPSs homólogas. Os testes de cristalização não resultaram na obtenção de cristais, porém a proteólise limitada permitiu selecionar tripsina como potencial para a clivagem do N terminal do N terminal flexível. A conservação dos resíduos de aminoácidos funcionais em NgSPS2.CTD e seu comportamento em solução confirmam a obrigatoriedade da união de cada monômero e, por isso o domínio metiltransferase adicional pode ser desfavorável à montagem do dímero e in vivo a fusão é desfeita após a tradução. / The target microorganism of the present study belongs to the Naegleria genus. This genus includes free life amoebas widely distributed around the world that, in order to survive in bad temperature and pH environments, developed an adaptive strategy consisting of cells differentiation to flagellate and cystic form. The biosynthesis and incorporation of selenocysteine amino acid (Sec, U) in N. gruberi has been described and, because of the co-translational incorporation of this amino acid in response to a UGA codon during the reading step, this process has several specific factors which make it a target for molecular studies. Among the identified genes, we can highlight the one which encodes the selenophosphate synthetase that is involved in the catalytic conversion of selenite and adenosine triphosphate into selenium phosphate, a necessary step to the Sec synthesis that uses selenide and ATP to produce selenophosphate. SPS from N.gruberi is encoded with an methyltransferase N-terminal fused with the typical SPS C-terminal domain, an open read frame that contains 2211 nucleotides encoding 737 amino acids. This discovery has motivated the initial aims of this project, based on the cellular investigation of SPS2, native on the three different form lifes of N. gruberi, through immunoenzymatic assays, besides a study with the recombinant protein to clarify the biochemistry and biophysics features of NgSPS2. The results indicated that the protein do not keep both domains fused after the translation process, suggesting that they need to be separated to perform their biological function. The investigation of the N. gruberi culture revealed that the cells become less sensitive to stress agent in the presence of selenium, which seems to be correlated with the increasing activity of the selenoprotein synthesis. The biochemistry characterization of the NgSPS2 C-terminal domain, using size exclusion chromatography and electrophoresis under non-denaturing conditions revealed the predominance of dimers in solution according with the typical homologous SPS oligomeric state. The crystallization tests have not resulted in crystal growth; however, the limited proteolysis may be an alternative to optimize the crystallization process. These studies may enlarge the knowledge about the biosynthesis of Sec. in N. gruberi.
4

Estudos estruturais e funcionais da Selenofosfato Sintetase de Trypanosoma brucei e Leishmania major / Structural and functional studies of Selenophosphate Synthetase from Trypanosoma brucei and Leishmania major

Faim, Lívia Maria 24 April 2014 (has links)
A síntese e incorporação de Selenocisteína em selenoproteínas ocorre co tradicionalmente direcionado pelo códon de terminação UGA. Uma maquinaria única de enzimas e fatores proteicos é necessária para síntese de selenocisteína e decodificação do códon UGA de terminação da tradução para inserção de selenocisteína. Dentre as enzimas envolvidas, está a Selenonofosfato sintetase (SPS2), responsável por catalisar a ativação de seleneto com adenosina 5 trifosfato (ATP) para gerar selenofosfato, o doador de selênio reativo que é substrato da próxima enzima da via para formação de selenocisteína. Estudos recentes identificaram a presença da via de biossíntese de selenocisteína em parasitas kinetoplastidas e subsequentemente a proteína SPS2 de Trypanosoma brucei e Leishmania major foram caracterizadas. Entretanto, trabalhos estruturais e funcionais das enzimas permaneceram não reportados. Dessa forma, este trabalho teve seu foco estabelecido na realização de estudos estruturais e funcionais da SPS2 de T. brucei e L. major. Para caracterização da proteína em solução foram empregadas as técnicas de cromatografia de exclusão de tamanho, eletroforese em gel nativo, espalhamento dinâmico de luz (DLS), espalhamento de Raios X a baixo ângulo (SAXS) e ultracentrifugação analítica (AUC). Os resultados obtidos revelaram uma mistura de dímeros e tetrâmeros em solução para ambas SPS2 com predominância de dímeros. Muitas estratégias de cristalização e melhorias na difração foram utilizadas para obtenção de cristais proteicos apropriados para determinação da estrutura cristalográfica das SPS2. Cristais de SPS2 de T. brucei inteira e SPS2 de L. major com N-terminal truncado foram obtidos. Porém, somente a estrutura cristalográfica da proteína SPS2 de Leishmania major com o N-terminal truncado a 1,9 Å de resolução foi determinada. Estudos comparativos entre esta estrutura e outras selenofosfato sintetases mostrou a mesma organização estrutural entre elas. Experimento de complementação funcional das SPS2 truncadas e mutadas pontualmente revelou três resíduos localizados no N-terminal como fundamentais para atividade da SPS2 (Leu33, Thr34; Tyr36 e Leu37, Thr38; Tyr40 para SPS2 de T. brucei e L.major, respectivamente). Análise mutacional baseada nas estruturas cristalográficas indicou que estes resíduos podem estar envolvidos no mecanismo de entrega do selenofosfato para a próxima enzima da via, a Selenocisteína sintase. Isto poderia evitar a difusão de compostos reativos de selênio, resultando em uma eficiência na síntese de selenocisteína. Os resultados aqui apresentados forneceram informações importantes e novas perspectivas a respeito do mecanismo de catalise da enzima selenofosfato sintetase na via de síntese de selenocisteína. / The synthesis and incorporation of selenocysteine in selenoproteins occurs cotranslationally directed by the UGA stop codon. An unique machine of enzymes and protein factors are required for selenocysteine synthesis and decoding of UGA translation termination codon for the insertion of selenocysteine. Among the enzymes involved, Selenonofosfato synthetase (SPS2) is the responsible for catalyzing the activation of selenite with adenosine 5\' - triphosphate (ATP) to generate selenophosphate, the reactive selenium donor, which is substrate of the next pathway enzyme to formation of selenocysteine. Recent studies have identified the presence of selenocysteine biosynthesis in parasites Kinetoplastidas and subsequently, the SPS2 protein of Trypanosoma brucei and Leishmania major have been characterized, however, structural and functional studies of enzymes remain not reported. Thus, this present work report biochemical and biophysical studies of SPS2. To characterize the protein in solution, there were employed the techniques of size exclusion chromatography, native gel electrophoresis, dynamic light scattering (DLS), Small angle X-ray scattering angle (SAXS) and analytical ultracentrifugation (AUC). The results revealed a mixture of dimmers and tetramers in solution for SPS2 with predominance of dimers. Many strategies and improvements in crystallization and diffraction were used to obtain suitable SPS2 crystals for determination of the crystallography structure. T. brucei SPS2 crystals and L. major SPS2 crystals with truncated N-terminal were obtained. However, only the structure of SPS2 protein from L. major with truncated N-terminal to 1.9 Å of resolution was solved. Comparative studies of this structure with other selenophosphate synthases revealed the same structural organization. Functional complementation experiments of truncated and mutated SPS2 revealed three residues located in the SPS2 N- terminal as essential for the activity of the enzyme (Leu33 , Thr34 and Tyr36 to T. brucei SPS2; Leu37 , Thr38 and Tyr40 to L. major SPS2) . Mutational analysis based on the crystal structures indicated that these residues may be involved in the mechanism of selenophosphate delivery to the pathway enzyme next, the selenocysteine synthase. This found could prevent the diffusion of reactive selenium, resulting in selenocysteine synthesis efficient. The results presented here provided important information and new insights about the of selenophosphate synthetase catalysis mechanism in the selenocysteine synthesis pathway.
5

Estudo celular, bioquímico e biofísico da enzima selenofosfato sintetase de Naegleria gruberi / Biochemical, biophysical and cellular studies of selenophosphate synthetase from Naegleria gruberi

Natalia Karla Bellini 16 July 2015 (has links)
O microrganismo alvo deste estudo pertence ao gênero Naegleria, que compreende amebas de vida livre amplamente distribuídas ao redor do mundo. Estas possuem estratégias de adaptação em condições de temperatura e pH que envolvem a diferenciação das células para as formas flagelada e cística. A via de biossíntese e incorporação do aminoácido selenocisteína (Sec, U) em N. gruberi foi descrita e, devido à incorporação co-traducional deste aminoácido em resposta a um códon UGA em fase de leitura, possui diversos fatores específicos que tornam a via alvo de estudos moleculares. Dentre os genes identificados, destaca-se o de selenofosfato sintetase (SPS), uma proteína funcionalmente dimérica envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, essencial à síntese de Sec. Diferindo das SPSs homólogas, em N. gruberi a proteína (NgSPS2) é codificada em fusão N-terminal com uma metiltransferase e totaliza 737 aminoácidos. Esta descoberta motivou os objetivos da pesquisa baseada na investigação celular de NgSPS2 nativa nas três diferentes formas de vida de N. gruberi através de ensaios imunoenzimáticos, e a caracterização bioquímica e biofísica da proteína recombinante. A análise dos resultados obtidos por Western blot indicaram que NgSPS2, in vivo, apresenta os dois domínios metiltransferase e SPS separados após a tradução para uma cultura amebóide e, após alcançar a diferenciação de cada uma das formas isoladamente, este resultado se confirmou também para cistos e flagelados. A investigação de N. gruberi em cultura indica o aumento na atividade da via de síntese de selenoproteínas na presença de selênio conferindo resistência às condições de estresse oxidativo. A caracterização bioquímica do domínio C-terminal de NgSPS2, por cromatografia de exclusão molecular analítica e eletroforese não desnaturante, revelou predominância de dímeros em solução, coerente com SPSs homólogas. Os testes de cristalização não resultaram na obtenção de cristais, porém a proteólise limitada permitiu selecionar tripsina como potencial para a clivagem do N terminal do N terminal flexível. A conservação dos resíduos de aminoácidos funcionais em NgSPS2.CTD e seu comportamento em solução confirmam a obrigatoriedade da união de cada monômero e, por isso o domínio metiltransferase adicional pode ser desfavorável à montagem do dímero e in vivo a fusão é desfeita após a tradução. / The target microorganism of the present study belongs to the Naegleria genus. This genus includes free life amoebas widely distributed around the world that, in order to survive in bad temperature and pH environments, developed an adaptive strategy consisting of cells differentiation to flagellate and cystic form. The biosynthesis and incorporation of selenocysteine amino acid (Sec, U) in N. gruberi has been described and, because of the co-translational incorporation of this amino acid in response to a UGA codon during the reading step, this process has several specific factors which make it a target for molecular studies. Among the identified genes, we can highlight the one which encodes the selenophosphate synthetase that is involved in the catalytic conversion of selenite and adenosine triphosphate into selenium phosphate, a necessary step to the Sec synthesis that uses selenide and ATP to produce selenophosphate. SPS from N.gruberi is encoded with an methyltransferase N-terminal fused with the typical SPS C-terminal domain, an open read frame that contains 2211 nucleotides encoding 737 amino acids. This discovery has motivated the initial aims of this project, based on the cellular investigation of SPS2, native on the three different form lifes of N. gruberi, through immunoenzymatic assays, besides a study with the recombinant protein to clarify the biochemistry and biophysics features of NgSPS2. The results indicated that the protein do not keep both domains fused after the translation process, suggesting that they need to be separated to perform their biological function. The investigation of the N. gruberi culture revealed that the cells become less sensitive to stress agent in the presence of selenium, which seems to be correlated with the increasing activity of the selenoprotein synthesis. The biochemistry characterization of the NgSPS2 C-terminal domain, using size exclusion chromatography and electrophoresis under non-denaturing conditions revealed the predominance of dimers in solution according with the typical homologous SPS oligomeric state. The crystallization tests have not resulted in crystal growth; however, the limited proteolysis may be an alternative to optimize the crystallization process. These studies may enlarge the knowledge about the biosynthesis of Sec. in N. gruberi.
6

Estudos estruturais e funcionais da Selenofosfato Sintetase de Trypanosoma brucei e Leishmania major / Structural and functional studies of Selenophosphate Synthetase from Trypanosoma brucei and Leishmania major

Lívia Maria Faim 24 April 2014 (has links)
A síntese e incorporação de Selenocisteína em selenoproteínas ocorre co tradicionalmente direcionado pelo códon de terminação UGA. Uma maquinaria única de enzimas e fatores proteicos é necessária para síntese de selenocisteína e decodificação do códon UGA de terminação da tradução para inserção de selenocisteína. Dentre as enzimas envolvidas, está a Selenonofosfato sintetase (SPS2), responsável por catalisar a ativação de seleneto com adenosina 5 trifosfato (ATP) para gerar selenofosfato, o doador de selênio reativo que é substrato da próxima enzima da via para formação de selenocisteína. Estudos recentes identificaram a presença da via de biossíntese de selenocisteína em parasitas kinetoplastidas e subsequentemente a proteína SPS2 de Trypanosoma brucei e Leishmania major foram caracterizadas. Entretanto, trabalhos estruturais e funcionais das enzimas permaneceram não reportados. Dessa forma, este trabalho teve seu foco estabelecido na realização de estudos estruturais e funcionais da SPS2 de T. brucei e L. major. Para caracterização da proteína em solução foram empregadas as técnicas de cromatografia de exclusão de tamanho, eletroforese em gel nativo, espalhamento dinâmico de luz (DLS), espalhamento de Raios X a baixo ângulo (SAXS) e ultracentrifugação analítica (AUC). Os resultados obtidos revelaram uma mistura de dímeros e tetrâmeros em solução para ambas SPS2 com predominância de dímeros. Muitas estratégias de cristalização e melhorias na difração foram utilizadas para obtenção de cristais proteicos apropriados para determinação da estrutura cristalográfica das SPS2. Cristais de SPS2 de T. brucei inteira e SPS2 de L. major com N-terminal truncado foram obtidos. Porém, somente a estrutura cristalográfica da proteína SPS2 de Leishmania major com o N-terminal truncado a 1,9 Å de resolução foi determinada. Estudos comparativos entre esta estrutura e outras selenofosfato sintetases mostrou a mesma organização estrutural entre elas. Experimento de complementação funcional das SPS2 truncadas e mutadas pontualmente revelou três resíduos localizados no N-terminal como fundamentais para atividade da SPS2 (Leu33, Thr34; Tyr36 e Leu37, Thr38; Tyr40 para SPS2 de T. brucei e L.major, respectivamente). Análise mutacional baseada nas estruturas cristalográficas indicou que estes resíduos podem estar envolvidos no mecanismo de entrega do selenofosfato para a próxima enzima da via, a Selenocisteína sintase. Isto poderia evitar a difusão de compostos reativos de selênio, resultando em uma eficiência na síntese de selenocisteína. Os resultados aqui apresentados forneceram informações importantes e novas perspectivas a respeito do mecanismo de catalise da enzima selenofosfato sintetase na via de síntese de selenocisteína. / The synthesis and incorporation of selenocysteine in selenoproteins occurs cotranslationally directed by the UGA stop codon. An unique machine of enzymes and protein factors are required for selenocysteine synthesis and decoding of UGA translation termination codon for the insertion of selenocysteine. Among the enzymes involved, Selenonofosfato synthetase (SPS2) is the responsible for catalyzing the activation of selenite with adenosine 5\' - triphosphate (ATP) to generate selenophosphate, the reactive selenium donor, which is substrate of the next pathway enzyme to formation of selenocysteine. Recent studies have identified the presence of selenocysteine biosynthesis in parasites Kinetoplastidas and subsequently, the SPS2 protein of Trypanosoma brucei and Leishmania major have been characterized, however, structural and functional studies of enzymes remain not reported. Thus, this present work report biochemical and biophysical studies of SPS2. To characterize the protein in solution, there were employed the techniques of size exclusion chromatography, native gel electrophoresis, dynamic light scattering (DLS), Small angle X-ray scattering angle (SAXS) and analytical ultracentrifugation (AUC). The results revealed a mixture of dimmers and tetramers in solution for SPS2 with predominance of dimers. Many strategies and improvements in crystallization and diffraction were used to obtain suitable SPS2 crystals for determination of the crystallography structure. T. brucei SPS2 crystals and L. major SPS2 crystals with truncated N-terminal were obtained. However, only the structure of SPS2 protein from L. major with truncated N-terminal to 1.9 Å of resolution was solved. Comparative studies of this structure with other selenophosphate synthases revealed the same structural organization. Functional complementation experiments of truncated and mutated SPS2 revealed three residues located in the SPS2 N- terminal as essential for the activity of the enzyme (Leu33 , Thr34 and Tyr36 to T. brucei SPS2; Leu37 , Thr38 and Tyr40 to L. major SPS2) . Mutational analysis based on the crystal structures indicated that these residues may be involved in the mechanism of selenophosphate delivery to the pathway enzyme next, the selenocysteine synthase. This found could prevent the diffusion of reactive selenium, resulting in selenocysteine synthesis efficient. The results presented here provided important information and new insights about the of selenophosphate synthetase catalysis mechanism in the selenocysteine synthesis pathway.
7

Estudos biofísicos da Selenofosfato Sintetase de Escherichia coli e investigação de seu papel na via de biossíntese de Selenocisteínas / Biophysical studies of Escherichia coli Selenophosphate Synthetase and investigation of its role in the Selenocysteine biosynthesis pathway

Silva, Ivan Rosa e 30 January 2012 (has links)
A principal forma biológica do selênio em vários organismos é o aminoácido Selenocisteína (Sec, U), que é incorporado em um polipeptídio emergente em códons UGA específicos. Em Escherichia coli, esta incorporação requer os genes que codificam para Seril-tRNA Sintetase (SerRS), Selenocisteína Sintase (SELA), um tRNASec específico (SELC), Selenofosfato Sintetase (SELD) e um fator de elongação de transcrição específico (SELB). A proteína Selenofosfato Sintetase (EC 2.7.9.3) pertence à família AIRS, de proteínas que têm o ATP como substrato, e produz o composto biologicamente ativo doador de selênio, o monoselenofosfato, a partir de ATP e seleneto. O gene selD em E. coli tem 1041 pares de bases e codifica uma proteína com 347 aminoácidos e massa molecular de 37 kDa. A fase aberta de leitura do gene selD foi amplificada do DNA genômico de E. coli e clonada em vetor de expressão pet28a(+) (Novagen). A proteína recombinante foi superexpressa em E. coli por indução com IPTG e purificada por cromatografia de afinidade por ligação a metal e a fração eluída foi concentrada por ultrafiltração. Em seguida, o produto foi submetido à clivagem da cauda de histidinas com Trombina. Para purificar o produto de reação de clivagem com protease e para estimar sua massa molecular e estado oligomérico, empregou-se cromatografia de exclusão molecular. A proteína pura foi utilizada em experimentos de Gel Nativo e em estudos das suas propriedades hidrodinâmicas realizados por meio de Espalhamento Dinâmico de Luz (DLS), Espalhamento de Raios-X a Baixo Ângulo (SAXS) e Ultracentrifugação Analítica (AUC). Os resultados obtidos revelam uma mistura de oligômeros em solução, em um equilíbrio dímero-tetrâmero e tetrâmero-octâmero. Um modelo tridimensional para o homodímero de SELD de E. coli foi obtido por Modelagem Molecular e suas propriedades hidrodinâmicas preditas concordam com aquelas obtidas experimentalmente. Adicionalmente, triagens de condições de cristalização da proteína revelaram condições em que a proteína cristaliza na forma de pequenas agulhas e ensaios de otimização por variação da concentração de agente precipitante e pH não resultaram em monocristais adequados para difração de raios-X. A análise do papel da SELD na via de biossíntese de Selenocisteínas levanta a hipótese de que esta proteína deve entregar o monoselenofosfato para o complexo SELA-SELC de modo que o selênio seja incorporado para formação do aminoácido Selenocisteína, já que os compostos de selênio são tóxicos quando estão livres na célula. Portanto, a investigação da interação da SELD com o complexo SELA-SELC foi observada pelo monitoramento da anisotropia de fluorescência do complexo SELA-SELC mediante titulação de SELD. A análise local da interação para manutenção do complexo SELD-SELA-SEC foi feita por meio de espectrometria de massas com troca H/D, que revelou possíveis sítios de interação na superfície da SELD. Os resultados mostrados neste trabalho ampliam o conhecimento sobre a via de biossíntese de Selenocisteína, revelando detalhes da interação da SELD com o complexo SELA-SELC. / The main biological form of selenium in several organisms is the amino acid Selenocysteine (Sec, U), which is incorporated into selenoproteins in specific UGA codons. In Escherichia coli, it requires the genes that codify to Seryl-tRNA Synthetase (SerRS), Selenocysteine Synthase (SELA), a specific tRNASec (SELC), Selenophosphate Synthetase (SELD) and a specific translation elongation factor (SELB). Selenophosphate Synthetase (EC 2.7.9.3) belongs to AIRS superfamily of proteins that have ATP as a substrate and this protein produces the biologically active selenium donor compound, monoselenophosphate, from ATP and selenide. The selD gene from E. coli is 1041 base pairs long and codifies a protein with 347 amino acids and molecular mass of 37 kDa. The open reading frame of selD gene was amplified from E. coli genomic DNA and cloned into pET28a(+) expression vector (Novagen). The recombinant protein was overexpressed in E. coli by IPTG induction and purified by metal affinity chromatography, and the eluted fraction was concentrated by ultrafiltration. The product was used for Thrombin protease cleavage of the 6-His tag. In order to purify the product of proteolysis and to estimate its molecular mass and oligomeric state, we used size exclusion chromatography. The pure protein sample was used for Native Gel Electrophoresis. Hydrodynamic properties of the protein were studied by Dynamic Light Scattering (DLS), Small angle X-ray scattering (SAXS) and Analytical Ultracentrifugation (AUC). The results show an equilibrium between SELD oligomeric forms, as dimer-tetramer and tetramer-octamer association in solution. A tridimensional model of E. coli SELD was obtained by Molecular Modelling and its predicted hydrodynamic properties agree with those observed experimentally. In addition, crystal screening revealed crystallization conditions suitable for protein crystallization as small needles, but optimization of these conditions by precipitant agent and pH variation did not result in monocrystals reliable for X-ray diffraction. An analysis of SELD´s role in the Selenocysteine biosynthesis pathway indicates that SELD must deliver monoselenophosphate to the SELA-SELC complex so that the selenium is incorporated to the amino acid to form selenocysteyl-SEC, since selenium compounds are toxic when they are freely available in the cell. This interaction was observed by fluorescence anisotropy. The local analysis of complex formation was monitored by mass spectrometry after H/D exchange and revealed possible sites for this interaction on SELD surface. The results improve our knowledge about the Selenocysteine pathway in the cell, showing details of the interaction between SELD and the SELA-SELC complex.
8

Estudos biofísicos da Selenofosfato Sintetase de Escherichia coli e investigação de seu papel na via de biossíntese de Selenocisteínas / Biophysical studies of Escherichia coli Selenophosphate Synthetase and investigation of its role in the Selenocysteine biosynthesis pathway

Ivan Rosa e Silva 30 January 2012 (has links)
A principal forma biológica do selênio em vários organismos é o aminoácido Selenocisteína (Sec, U), que é incorporado em um polipeptídio emergente em códons UGA específicos. Em Escherichia coli, esta incorporação requer os genes que codificam para Seril-tRNA Sintetase (SerRS), Selenocisteína Sintase (SELA), um tRNASec específico (SELC), Selenofosfato Sintetase (SELD) e um fator de elongação de transcrição específico (SELB). A proteína Selenofosfato Sintetase (EC 2.7.9.3) pertence à família AIRS, de proteínas que têm o ATP como substrato, e produz o composto biologicamente ativo doador de selênio, o monoselenofosfato, a partir de ATP e seleneto. O gene selD em E. coli tem 1041 pares de bases e codifica uma proteína com 347 aminoácidos e massa molecular de 37 kDa. A fase aberta de leitura do gene selD foi amplificada do DNA genômico de E. coli e clonada em vetor de expressão pet28a(+) (Novagen). A proteína recombinante foi superexpressa em E. coli por indução com IPTG e purificada por cromatografia de afinidade por ligação a metal e a fração eluída foi concentrada por ultrafiltração. Em seguida, o produto foi submetido à clivagem da cauda de histidinas com Trombina. Para purificar o produto de reação de clivagem com protease e para estimar sua massa molecular e estado oligomérico, empregou-se cromatografia de exclusão molecular. A proteína pura foi utilizada em experimentos de Gel Nativo e em estudos das suas propriedades hidrodinâmicas realizados por meio de Espalhamento Dinâmico de Luz (DLS), Espalhamento de Raios-X a Baixo Ângulo (SAXS) e Ultracentrifugação Analítica (AUC). Os resultados obtidos revelam uma mistura de oligômeros em solução, em um equilíbrio dímero-tetrâmero e tetrâmero-octâmero. Um modelo tridimensional para o homodímero de SELD de E. coli foi obtido por Modelagem Molecular e suas propriedades hidrodinâmicas preditas concordam com aquelas obtidas experimentalmente. Adicionalmente, triagens de condições de cristalização da proteína revelaram condições em que a proteína cristaliza na forma de pequenas agulhas e ensaios de otimização por variação da concentração de agente precipitante e pH não resultaram em monocristais adequados para difração de raios-X. A análise do papel da SELD na via de biossíntese de Selenocisteínas levanta a hipótese de que esta proteína deve entregar o monoselenofosfato para o complexo SELA-SELC de modo que o selênio seja incorporado para formação do aminoácido Selenocisteína, já que os compostos de selênio são tóxicos quando estão livres na célula. Portanto, a investigação da interação da SELD com o complexo SELA-SELC foi observada pelo monitoramento da anisotropia de fluorescência do complexo SELA-SELC mediante titulação de SELD. A análise local da interação para manutenção do complexo SELD-SELA-SEC foi feita por meio de espectrometria de massas com troca H/D, que revelou possíveis sítios de interação na superfície da SELD. Os resultados mostrados neste trabalho ampliam o conhecimento sobre a via de biossíntese de Selenocisteína, revelando detalhes da interação da SELD com o complexo SELA-SELC. / The main biological form of selenium in several organisms is the amino acid Selenocysteine (Sec, U), which is incorporated into selenoproteins in specific UGA codons. In Escherichia coli, it requires the genes that codify to Seryl-tRNA Synthetase (SerRS), Selenocysteine Synthase (SELA), a specific tRNASec (SELC), Selenophosphate Synthetase (SELD) and a specific translation elongation factor (SELB). Selenophosphate Synthetase (EC 2.7.9.3) belongs to AIRS superfamily of proteins that have ATP as a substrate and this protein produces the biologically active selenium donor compound, monoselenophosphate, from ATP and selenide. The selD gene from E. coli is 1041 base pairs long and codifies a protein with 347 amino acids and molecular mass of 37 kDa. The open reading frame of selD gene was amplified from E. coli genomic DNA and cloned into pET28a(+) expression vector (Novagen). The recombinant protein was overexpressed in E. coli by IPTG induction and purified by metal affinity chromatography, and the eluted fraction was concentrated by ultrafiltration. The product was used for Thrombin protease cleavage of the 6-His tag. In order to purify the product of proteolysis and to estimate its molecular mass and oligomeric state, we used size exclusion chromatography. The pure protein sample was used for Native Gel Electrophoresis. Hydrodynamic properties of the protein were studied by Dynamic Light Scattering (DLS), Small angle X-ray scattering (SAXS) and Analytical Ultracentrifugation (AUC). The results show an equilibrium between SELD oligomeric forms, as dimer-tetramer and tetramer-octamer association in solution. A tridimensional model of E. coli SELD was obtained by Molecular Modelling and its predicted hydrodynamic properties agree with those observed experimentally. In addition, crystal screening revealed crystallization conditions suitable for protein crystallization as small needles, but optimization of these conditions by precipitant agent and pH variation did not result in monocrystals reliable for X-ray diffraction. An analysis of SELD´s role in the Selenocysteine biosynthesis pathway indicates that SELD must deliver monoselenophosphate to the SELA-SELC complex so that the selenium is incorporated to the amino acid to form selenocysteyl-SEC, since selenium compounds are toxic when they are freely available in the cell. This interaction was observed by fluorescence anisotropy. The local analysis of complex formation was monitored by mass spectrometry after H/D exchange and revealed possible sites for this interaction on SELD surface. The results improve our knowledge about the Selenocysteine pathway in the cell, showing details of the interaction between SELD and the SELA-SELC complex.

Page generated in 0.5291 seconds