Spelling suggestions: "subject:"self dealing"" "subject:"self cealing""
181 |
Biobased Photocurable Resins for 3D-Printing of Self-Healable & Recyclable Thermosets / Biobaserade, UV-härdbara resin för 3D-utskrift av självläkande och återvinningsbara härdplasterGardell, Anna, Aspenberg, Maria, Aziz, Julia January 2022 (has links)
Överkonsumtionen av engångsartiklar i fossilbaserad plast är ett av dagens stora miljöproblem. Således finns en efterfrågan på strategier för framställning av biobaserade plaster i allmänhet och härdplaster i synnerhet. Tidigare forskning har visat att vanillin-baserade resin, genom UV-härdning och dynamisk iminkemi, kan användas i framställningen av härdplaster som är termiskt bearbetningsbara, kemiskt återvinningsbara och självläkande. Följaktligen är Digital Light Processing (DLP) 3D-utskrivning en möjlig och flexibel friformframställningsmetod med stor noggrannhet för sådana härdplaster. Mot denna bakgrund framställdes, i detta projekt, tre olika UV-härdbara, biobaserade monomerer, i form av vitrimerresin, genom en tvåstegsreaktion: metakrylering av vanillin följt av iminbildning med tre olika aminer (etylendiamin, EDA; 2,2′-etylendioxi bisetylamin, EDEA och trimetylolpropan trispolypropylenglykol aminterminerad eter, T-403). De tre olika monomererna analyserades för att identifiera den mest lämpade för friformframställning av härdplast med DLP 3D-printning. Monomeren framställd med EDA kunde inte UV-härdas till en härdplast. De två andra monomererna, å andra sidan, härdades framgångsrikt till härdplaster med god termisk stabilitet (upp till ungefär 300 °C) samtidigt som de var termiskt bearbetningsbara. Vidare visade dessa härdplaster lovande resultat vad gäller självläkning och kemisk återvinningsbarhet. Härdningen av monomeren syntetiserad med EDEA krävde minst tidsåtgång. Utöver detta visade denna härdplast god stabilitet i ett flertal vanliga lösningsmedel samtidigt som den, till följd av dess dynamiska iminbindningar, kemiskt kunde återvinnas i hexylamin. Slutligen visades det hur detta resin framgångsrikt kunde användas i DLP 3D-utskrivning av härdplast. / One of the main causes of the petrochemical depletion is the overconsumption of single-use plastic products. New strategies based on the production of plastics (in particular thermosets) starting from bio-based resources are, therefore, demanded. Previous research has shown how vanillin-based vitrimer resins can be photocured into thermally reprocessable, chemically recyclable and self-healable imine thermosets; and the potential of the light-assisted 3D-printing techniques for the photocuring of resins with great accuracy and flexibility. In this study, three different photocurable biobased vitrimer resins were synthesized through a two-step procedure involving the methacrylation of vanillin and the Schiff-base reaction with two different diamines (ethylenediamine, EDA; 2,2′-(Ethylenedioxy) bis(ethylamine), EDEA) and a triamine (trimethylolpropane tris[poly(propylene glycol), amine terminated] ether, T-403). The resins were analyzed in order to find the most suitable one for DLP 3D-printing. The resin with EDA, as diamine, could not be successfully UV-cured into a thermoset. The other two thermosets showed good thermal stability, up to about 300 °C, while still being thermally reprocessable. In addition, the thermosets were promising in terms of self-healability and chemical recyclability. The thermoset obtained from the Schiff-base resin synthesized with the diamine EDEA provided the shortest curing time. This resin also displayed good solvent resistance against common solvents and potential chemical recyclability in hexylamine through an imine exchange reaction. As a final step, the possibility to obtain tridimensional thermosets by curing this resin with a DLP 3D-printing was successfully demonstrated.
|
182 |
Composites fibreux denses à matrice céramique autocicatrisante élaborés par des procédés hybrides / Dense self-healing ceramic matrix composites fabricated by hybrid processesMagnant, Jérôme 15 November 2010 (has links)
L'élaboration de composites à matrice céramique denses et à fibres continues multidirectionnelles par de nouveaux procédés hybrides a été étudiée. Les procédés développés reposent sur le dépôt d'interphases autour des fibres par Infiltration Chimique en phase Vapeur (CVI) puis sur l'introduction de poudres céramiques au sein de préformes fibreuses par infusion de suspensions aqueuses colloïdales concentrées et stables, et enfin sur la consolidation des préformes soit par frittage flash, soit par imprégnation réactive de métaux liquides.La consolidation des composites par frittage flash est très rapide (palier de maintien en température inférieure à 5 minutes) et permet d'obtenir des composites denses. Durant le frittage, la dégradation des fibres de carbone a pu être évitée en adaptant le cycle de pression afin de limiter l'évolution des gaz au sein du système.La densification totale des composites par imprégnation de métaux liquides a été obtenue en contrôlant attentivement les paramètres d'imprégnation afin d'éviter de piéger des espèces gazeuses au sein des préformes fibreuses.Les composites à fibres de carbone consolidés par frittage flash ou par imprégnation réactive de métaux liquide possèdent un comportement mécanique de type élastique endommageable ainsi qu'une contrainte à rupture en flexion voisine de 300 MPa. Ces composites ont montré leur capacité à s'autocicatriser dans des conditions oxydantes. Comparés aux composites à matrice céramiques élaborés par CVI, les composites densifiés par imprégnation de métaux liquide sont eux parfaitement denses et ont un comportement mécanique en traction à température ambiante similaire avec notamment une contrainte à rupture en traction de 220 MPa. / The fabrication of multidirectional continuous carbon fibers reinforced dense self healing Ceramic Matrix Composites by new short time hybrid processes was studied. The processes developed are based, first, on the deposition of fiber interphase and coating by chemical vapor infiltration, next, on the introduction of ceramic powders into the fibrous preform by Slurry Impregnation and, finally, on the densification of the composite by liquid-phase Spark Plasma Sintering (SPS) or by Reactive Melt Infiltration of silicon (RMI).The homogeneous introduction of the ceramic particles into the multidirectional fiber preforms was realized by slurry impregnation from highly concentrated (> 32 %vol.) and well dispersed aqueous colloid suspensions. The densification of the composites by spark plasma sintering was possible with a short (< 5 minutes) dwelling period in temperature. The chemical degradation of the carbon fibers during the fabrication was prevented by adapting the sintering pressure cycle to inhibit gas evolution inside the system. The composites elaborated are dense. The fully densification of the composites by RMI was realised by carefully controlling the impregnation parameters to avoid to entrap some gaseous species inside the fiber preforms. Our carbon fiber reinforced ceramic matrix composites processed by Spark Plasma Sintering or Reactive Melt Infiltration have a damageable mechanical behaviour with a room temperature bending stress at failure around 300 MPa and have shown their ability to self-healing in oxidizing conditions. Compared to the CMC processed by CVI, the composites processed with a final consolidation step by RMI are fully dense and have a similar room temperature tensile test behaviour with an ultimate tensile stress around 220 MPa.
|
Page generated in 0.0932 seconds