• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 248
  • 57
  • 28
  • 1
  • 1
  • 1
  • Tagged with
  • 332
  • 93
  • 61
  • 50
  • 50
  • 47
  • 44
  • 44
  • 42
  • 40
  • 40
  • 39
  • 37
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Modélisation et simulation numérique des nano-transistors multi-grilles à matériaux innovants

Moreau, Mathieu 09 December 2010 (has links) (PDF)
Afin de continuer l'amélioration des performances du transistor MOSFET à l'échelle décananométrique, la recherche en microélectronique explore différentes solutions. Les travaux menés au cours de cette thèse se sont plus particulièrement orientés vers l'étude de transistors innovants avec une architecture Double-Grille (DGMOSFET) et l'utilisation de “nouveaux” matériaux tels que les diélectriques de grille à forte permittivité dits “high-κ” et les semiconducteurs à forte mobilité intrinsèque (Ge et III-V). Grâce au développement de codes de simulation numérique basés sur la résolution auto-cohérente du couple d'équations Poisson-Schrödinger ou en utilisant le formalisme des fonctions de Green (NEGF), nous étudions le comportement électrique de différentes structures. Dans un premier temps, le fonctionnement des capacités Métal-Isolant-Semiconducteur et Métal-Isolant-Métal est simulé afin d'évaluer l'influence des propriétés des matériaux innovants et de la composition de l'empilement de grille sur les caractéristiques capacité-tension et sur le courant de fuite tunnel à travers la grille. Puis, les performances en termes de courant de drain face à la réduction de la longueur de grille (effets électrostatiques) et de l'épaisseur du canal de conduction (effet de confinement quantique) sont comparées dans le transistor MOS Double-Grille (à grilles indépendantes ou connectées) avec plusieurs matériaux aux propriétés très différentes (Si, Ge, GaAs et In0.53Ga0.47As). Enfin, nous avons développé une approche simplifiée (modélisation compacte) pour le calcul du courant de drain en dérive-diffusion ou balistique dans les transistors MOS Double-Grille à grilles indépendantes, validée par nos codes de simulation numérique.
222

Ionisation nonlinéaire dans les matériaux diélectriques et semiconducteurs par laser femtoseconde accordable dans le proche infrarouge

Leyder, Stéphanie 17 December 2013 (has links) (PDF)
La microfabrication 3D par laser dans les matériaux à faible bande interdite nécessitera l'utilisation d'impulsions intenses dans l'infrarouge proche et moyen. Cette étude expérimentale se concentre sur les spécificités de la physique d'ionisation nonlinéaire dans la gamme de longueur d'onde de 1300-2200 nm. Contrairement aux semiconducteurs, l'absorption nonlinéaire mesurée dans les diélectriques est indépendante de la longueur d'onde révélant ainsi l'importance accrue de l'ionisation par effet tunnel avec ces longueurs d'onde. Nous étudions également les rendements et les seuils d'ionisation multiphotonique et avalanche dans le silicium intrinsèque et dopé N. Les résultats couplés à l'observation des matériaux irradiés montrent que les propriétés intrinsèques des semiconducteurs empêchent un dépôt d'énergie suffisamment confiné pour viser directement des applications de modification locale. Ce travail illustre les possibilités de micro-usinage laser 3D dans les diélectriques et les défis de l'extension de cette technique aux semiconducteurs.
223

Étude des ondes de spin dans des puits quantiques CdMnTe

Ben Cheikh, Zouhour 28 October 2013 (has links) (PDF)
Cette thèse porte sur l'étude des ondes de spin dans des puits quantiques CdMnTe dopés n, par rotation Kerr résolue en temps (TRKR) et par mélange à quatre ondes (FWM). Nous avons étudié trois échantillons de haute mobilité et de caractéristiques différentes.La technique TRKR donne accès uniquement aux excitations de vecteur d'onde nul, dans notre cas l'onde spin-flip en q=0. Nous avons étudié l'anticroisement qui apparait entre l'onde spin-flip et l'excitation spin-flip des ions manganèse. Nous avons étudié la variation du gap, et donc de l'énergie de couplage, entre ces modes en fonction de la puissance d'excitation et du champ magnétique. En particulier nous avons étendu les mesures des modes mixtes à plus basse concentration en Mn (jusqu'à 0.07%) et contrairement à ce qui était attendu, nous avons trouvé que le régime de couplage fort persiste à cette concentration.Nous nous sommes ensuite intéressés à la détermination de la polarisation en spin ζ du gaz d'électrons bidimensionnel, qui peut être déduite de l'énergie de couplage entre les modes mixtes. Nous avons trouvé que la polarisation mesurée par cette méthode excède la polarisation théorique calculée en prenant en compte le renforcement de la susceptibilité par les effets à N corps. Nous avons également mesuré les temps de relaxation des électrons confinés dans le puits quantique, et nous avons montré l'influence de l'échauffement de l'échantillon par le laser sur le temps de relaxation de spin des électrons.Dans la deuxième partie de cette thèse, nous avons étudié par FWM l'amortissement et la dispersion des ondes de spin de vecteur d'onde non nul pour l'un de nos échantillons. Nous avons démontré qu'on peut effectivement générer les ondes de spin en excitation femtoseconde, et les détecter en FWM. Nous avons trouvé que leur dispersion est plus faible que celle observée dans les expériences de Raman. Cette faible dispersion pourrait être imputable à la forte densité d'excitation utilisée dans les expériences de FWM (typiquement trois à quatre ordres de grandeur supérieurs à celle du Raman), et/ou au fait que deux ondes de vecteur d'ondes q et -q, ayant des dispersions différentes, sont sondées simultanément en FWM.
224

Lasers à blocage de modes à base de fils et de boîtes quantiques pour les télécommunications optiques

Dontabactouny, Madhoussoudhana 18 November 2010 (has links) (PDF)
La génération d'impulsions courtes et de fréquence de répétition élevée est une fonction essentielle dans les systèmes de communication modernes. De plus, un faible niveau de bruit est requis afin d'avoir des systèmes performants. Les lasers à semiconducteurs à blocage de modes permettent justement d'émettre des impulsions subpicosecondes à des fréquences supérieures à plusieurs centaines de GHz. L'utilisation d'une nouvelle génération de structures à fils ou boîtes quantiques, pour la réalisation des zones actives de ces lasers, a conduit à des impulsions très courtes et de haute fréquence avec de très faibles niveaux de bruits, inférieurs à ceux mesurés sur les structures usuelles à puits quantiques. Le laboratoire CNRS Foton-INSA a une expérience de longue date dans la croissance de fils et de boîtes quantiques de haute qualité en InAs sur substrat d'InP. Le but de cette thèse a été d'expérimenter ces structures pour la réalisation de lasers à blocage de modes. Dans un premier temps ces structures ont été caractérisées par des techniques de mesure de photoluminescence et d'électroluminescence afin de sélectionner les plus adaptées pour la réalisation de lasers monomodes à deux sections, l'une amplificatrice et l'autre à absorption saturable afin d'initier le blocage de modes. Les lasers à boîtes quantiques ont présenté un comportement instable. Il s'agit d'une bifurcation du pic d'émission optique vers deux directions dont l'écart augmente avec le courant d'injection. L'origine de ce phénomène a été attribuée à des groupes de boîtes quantiques caractérisées probablement par leur différence de taille. Le blocage de modes a effectivement été obtenu dans des lasers à fils quantiques à une fréquence de 10,6 GHz et de 41 GHz. La caractérisation des impulsions a révélé une forte dérive en longueur d'onde de celles-ci. En effet, une fibre optique monomode d'environ 545 m a été nécessaire pour compresser ces impulsions et atteindre une durée aussi courte qu'une picoseconde. Le niveau de bruit de ces lasers s'avère être 30 fois plus faible que le niveau le plus bas mesuré sur les composants à puits quantiques.
225

Étude des propriétés ferromagnétiques de structures à base de Ga1-xMnxAs dédiées à l'électronique de spin / Ferromagnetic properties study of structure based on Ga1-xMnxAs for spintronic devices

Kamara, Souleymane 10 December 2010 (has links)
À la fois semi-conducteur et ferromagnétique, le Ga1-xMnxAs offre des potentialités intéressantes pour l'électronique de spin. Cette double propriété est due à l'interaction d'échange entre les spins localisés des atomes de manganèse Mn et les spins des porteurs de charge. Le travail présenté dans cette thèse est centré sur le contrôle de l'aimantation de ces structures magnétiques. Une étude expérimentale, comparative et détaillée, de l'anisotropie magnétique a été menée sur deux séries d'échantillons. Par ailleurs, une méthode d'analyse basée sur l'étude de la densité d'énergie libre magnétocristalline des systèmes observés a été développée en vue de confronter les résultats aux prédictions théoriques. Les mesures d'effet Hall et d'aimantation par SQUID sur des monocouches à aimantation planaire ont permis de mettre en évidence deux types d'anisotropie : une anisotropie cubique pour T < TC/2 avec un retournement d'aimantation par sauts de 90°, et une anisotropie uniaxiale pour des températures TC/2 < T < TC avec un renversement d'aimantation à 180°. La technique du recuit post-croissance réduit cependant l'anisotropie cubique au profit de l'anisotropie uniaxiale. Les structures à aimantation perpendiculaire présentent, quant à elles, un retournement d'aimantation à 180° pour toutes les températures T < TC. Par conséquent, dans ces dispositifs, l'anisotropie magnétique est fortement uniaxiale. En dernier lieu, cette étude porte sur la dynamique des domaines magnétiques et la détermination des vitesses de propagation de parois de domaines, induites par un champ magnétique. Les résultats révèlent une anisotropie de propagation de parois suivant les axes cristallographiques <110> avec deux régimes de vitesses distincts, dont l'un est fortement contrôlé par des défauts de structure. / At the same time semiconductor and ferromagnetic, the Ga1-xMnxAs offers interesting potentialities for spintronic. This double property is due to the exchange interaction between localized spin of Mn atoms and the spin charge carrier. The work presented in this thesis is centred on the magnetization control of these magnetic structures. A comparative and detailed experimental study of the magnetic anisotropy is carried out on two series of samples. An analysis method based on the free energy density study of the observed systems was also been developed to confront the results with theoretical predictions. The Hall effect and SQUID measurements on the structures with planar magnetization allowed us to bring to light two types of anisotropy: a cubic anisotropy for T < TC / 2 with a magnetization reversal by jumps of 90 ° and an uniaxial anisotropy for temperatures TC / 2 < T < TC with a reversal of magnetization in 180°. The structure with perpendicular magnetization present a magnetization switch at 180° for all temperatures T < TC. Consequently in these compounds, the magnetic anisotropy is strongly uniaxiale. Lastly this study deals the magnetic domains structures and the determination of domain wall propagation velocity. The results reveal an anisotropic domain wall propagation along crystallographic axes <110> with two distinct velocity regimes, including one strongly controlled by structural defects.
226

Electronic properties of quasi-one-dimensional systems (C60@SWCNTs and InAs nanowires) studied by electronic transport under high magnetic field / Propriétés électroniques des systèmes quasi-unidimensionnels (C60@SWCNTs et nanofils d'InAs) étudiés par le transport électronique sous champ magnétique intense

Prudkovskiy, Vladimir 14 June 2013 (has links)
Cette thèse présente des mesures de transport électronique dans des systèmes quasi-unidimensionnels (quasi-1D) sous champ magnétique intense. Deux systèmes différents présentant un confinement électrique quasi-1D ont été considérés: les peapods de carbone (C60@SWCNTs) et les nanofils d'InAs. L’objectif de ces travaux consiste à sonder les propriétés électroniques spécifiques de ces systèmes quasi-1D par les mesures de magnétotransport sur les nano-objets uniques. Dans les deux cas, les expériences sous champs magnétiques intenses ont été accompagnée par des caractérisations structurales et des mesures de conductance à champ magnétique nul.L'encapsulation de diverses molécules à l'intérieur de nanotubes de carbone (CNTs), comme par exemple les fullerènes C60, constitue une des voies prometteuses vers l'accordabilité de la conductance des CNTs. Parmi la grande variété des nanotubes de carbone remplis, les peapods représentent une structure hybride pionnière découvert en 1998. Depuis lors, leur structure électronique a fait l’objet d’études théoriques controversées avec un nombre limité de réalisations expérimentales. Dans cette thèse, les propriétés électroniques des peapods individuels ont été étudiés en combinant les mesures de spectroscopie micro-Raman et de magnétotransport sur les mêmes échantillons. Nous avons constaté que les C60 encapsulés modifient fortement la structure de bande électronique des nanotubes semi-conducteurs au voisinage du point de neutralité de charge. Cette modification comprend un déplacement rigide de la structure électronique et un remplissage partiel de la bande interdite. Nous avons aussi montré que l’excitation UV sélective des fullerènes conduit à une forte modification du couplage électronique entre les C60 et le CNT induite par la coalescence partielle des C60 et de leur distribution à l'intérieur du tube. Les résultats expérimentaux sont supportés par des simulations numériques de la densité d'états et de la conductance des nanotubes de carbone avec des fullerènes fusionnés à l'intérieur (K. Katin, M. Maslov).Les nanofils semiconducteurs (sc-NWs) font l'objet de recherches actives depuis ces dix dernières années. Ils représentent des systèmes modèles pour l’étude des propriété électronique objet quasi-1D. Ils représentent en outre des possibilités de modulation de la structure de bande aussi que de contrôle de la densité de porteurs. Dans ce domaine de recherche, les nanofils semi-conducteurs à base de composes III-V tel que InAs, ont une place particulière en raison de la faible masse effective des porteurs de charge. Nous avons étudié la conductance de nanofils individuels dans une large gamme de champs magnétiques (jusqu'à 60T). Les mesures en champ nul et en champ faible ont démontré un transport faiblement diffusif dans ces nanofils. Les mesures de transport sous champ magnétique intense ont révélé une forte chute de la conductance au dessus d'un champ critique qui s'élève clairement avec l'énergie de Fermi. Cet effet est interprété par la perte de canaux de conduction une fois que toutes les sous-bandes magnéto-électriques, décalés vers les hautes énergies par le champ magnétique, ont traversé l'énergie de Fermi. Les calculs de structure de bande préliminaires (Y-M. Niquet), en prenant en compte les confinements latéraux et magnétiques, sont en bon accord qualitatif avec les résultats observés dans le régime de champ magnétique intense. Ce résultat est la première observation des effets de structure de bande dans les expériences de magnéto-transport sur les sc-NWs / The scope of this thesis is related to the electronic properties of quasi 1D systems probed by high field magnetotransport. Two different systems exhibiting quasi-1D confinement have been considered: carbon C60 peapods (C60@SWCNTs) and InAs semiconductor nanowires. The magnetotransport measurements on single nano-objets have been used to investigate the specific electronic structure of these 1D systems. In both cases, the high magnetic fields experiments have been supported by structural characterisation and conductance measurements at zero field.The encapsulation of various molecules inside carbon nanotubes (CNTs), as for instance C60 fullerenes encapsulated in SWCNT, constitutes promising routes towards the tunability of the CNT conductance. Among the wide variety of filled CNTs, peapods represent a pioneer hybrid structure discovered in 1998. Since that time, their electronic structure has been subjected to intense and controversial theoretical studies together with a limited number of experimental realizations. In this thesis the electronic properties of individual fullerene peapods have been investigated by combining micro-Raman spectroscopy and magnetotransport measurements on the same devices. We bring evidence that the encapsulated C60 strongly modify the electronic band structure of semiconducting nanotubes in the vicinity of the charge neutrality point, including a rigid shift and a partial filling of the energy gap. In addition by playing with a selective UV excitation of the fullerene, we demonstrate that the electronic coupling between the C60 and the CNT is strongly modified by the partial coalescence of the C60 and their distribution inside the tube. The experimental results are supported by numerical simulations of the Density of States and the conductance of CNTs with coalesced fullerenes inside (K. Katin, M. Maslov).Semiconductor nanowires (sc-NWs) are being the subject of intense researches started a decade ago. They represent model systems for the exploration of the electronic properties inerrant to the quasi1-D confinement. Moreover they offer the possibility to play with band structure tailoring and carrier doping. In this direction III-V sc-NWs such as InAs NWs have played a particular role due to the small electron effective mass. We have studied the high magnetic field conductance of single nanowires. Prior to the high field measurements, the zero and low field investigations have demonstrated a weakly diffusive regime of the carrier transport in these wires. The high field investigations have revealed a drastic conductance drop above a critical field, which clearly rises with the Fermi energy. This effect is interpreted by the loss of conducting channels once all the magneto-electric subbands, shifted toward the high energy range by the magnetic field, have crossed the Fermi energy. Preliminary band structure calculations (Y-M. Niquet), taking into account the lateral and magnetic confinements, are in fairly good qualitative agreement with the observed result in the high field regime. This result is the first observation of band structure effects in magneto-transport experiments on sc-NWs
227

Synthèse par épitaxie et propriétés magnétiques des semiconducteurs ferromagnétiques dilués à base de GeMn

Le thi, Giang 13 June 2012 (has links)
Le développement des dispositifs issus de l'électronique de spin nécessite de nouveaux matériaux qui permettent d'injecter de manière efficace le courant polarisé en spin dans des semiconducteurs. Parmi de nombreux matériaux utilisés comme injecteurs de spin, les semiconducteurs ferromagnétiques dilués (DMS), obtenus en dopant des semiconducteurs avec des impuretés magnétiques tels que Mn ou Co, sont considérés comme des candidats potentiels pour l'injection de spin. Ces matériaux dopés deviennent ferromagnétiques tout en conservant leurs propriétés semiconductrices. Par conséquent, ils présentent une similarité d'impédance électrique par rapport aux substrats semiconducteurs, ce qui rend efficace l'injection de courant polarisé en spin dans ces derniers. Dans ce contexte, l'objectif principal de cette thèse consiste à étudier la cinétique de croissance des semiconducteurs ferromagnétiques dilués GeMn. Nous cherchons à déterminer les paramètres clés de la croissance des couches de GeMn, à savoir la température du substrat, et la concentration en Mn. Pour la fabrication de dispositifs électroniques fonctionnels, le challenge crucial est d'obtenir des DMS ayant une température de Curie (TC) bien supérieure à la température ambiante. Nous nous sommes donc concentrés sur la cinétique de formation de la phase nanocolonnaire GeMn possédant une TC au-delà de 400 K. / The development of active spintronic devices requires new materials, which enable to efficiently inject spin-polarized currents into non-magnetic semiconductors. Among numerous materials that can be used as spin injectors, diluted magnetic semiconductors (DMS), obtained by doping standard semiconductors with magnetic impurities, such as Mn or Co, have emerged as potential candidates for spin injection. The materials become ferromagnetic while conserving their semiconducting properties. They exhibit therefore natural impedance match to host semiconductors and are expected to efficiently inject spin-polarized currents into semiconductors. In this context, the main objectives of this thesis work consist in studying the growth kinetics of GeMn-based diluted magnetic semiconductors. We aim at determining the main growth parameters, such as the substrate temperature and the Mn concentration, that govern the growth process of GeMn layers. Since for device applications it is crucial to obtain DMS exhibiting a Curie temperature (TC) well above room temperature, we have focused our attention to the kinetic formation of the GeMn nanocolumn phase, which exhibits a Curie temperature higher than 400 K.
228

Synthèse en milieu aqueux de nanocristaux de semi-conducteurs via des procédés microfluidiques / Synthesis of semiconductor nanocrystals in aqueous media by microfluidic technology

Kolmykov, Oleksii 07 July 2017 (has links)
Au cours de ces dernières années, la microfluidique est devenue une technologie attrayante pour la synthèse en écoulement continu de dispersions colloïdales de nanocristaux. Ce procédé permet un contrôle optimal des paramètres de synthèse, offre une très bonne reproductibilité, et la possibilité de transposition à grande échelle. Dans une première partie, nous avons développé des synthèses microfluidiques et écologiques de cristaux ZIF 8, adaptables à une grande échelle de production, avec un écoulement monophasique ou biphasique (eau/alcane). La technologie microfluidique permet la synthèse rapide (10 min) de cristaux ZIF-8 avec une large variation de taille de particules (de 300 à 900 nm) simplement en faisant varier les paramètres expérimentaux (débit, température, ...). Les cristaux de ZIF-8 obtenus sont de forme géométrique dodécaèdrique rhombique, de structure cristalline sodalite et leur surface spécifique est d’environ 1700 m2/g. Puis, les propriétés catalytiques des particules ZIF-8 ont été évaluées. Des 3-cyanocoumarines et des cyanoesters α,β-insaturés ont été synthétisés avec des rendements variant de 89 à 95% via la réaction de Knoevenagel utilisant les particules ZIF-8 comme catalyseur hétérogène. Les particules de ZIF-8 peuvent être recyclées au minimum cinq fois. Dans la seconde partie de ce mémoire, nous avons synthétisé des QDs CdS dopé Mn2+ et Cu+ recouverts d’une coquille ZnS en microréacteur tubulaire avec un écoulement monophasique ou biphasique (eau/alcane). Différents paramètres expérimentaux (temps de séjour, température, pH, rapport molaire des précurseurs, concentration et nature des précurseurs, …) ont été évalués afin d’optimiser les propriétés optiques. Les QDs CdS dopé Mn2+ présentent uniquement l’émission de fluorescence liée à la transition 4T1→6A1 et leur rendement quantique de fluorescence est voisin de 10%. L’introduction d’une coquille ZnS en écoulement monophasique permet d’améliorer les propriétés optiques et de réduire les défauts des surfaces des QDs 6%Mn:CdS/ZnS (émission à 590 nm et rendement quantique de 20 %). L’introduction d’une coquille ZnS à la périphérie des QDs Cu:CdS ne permet pas d’améliorer de manière significative le rendement quantique de fluorescence. Dans la dernière partie, la synthèse en microréacteur avec écoulement monophasique ou biphasique (eau/alcane) de QDs ZnS dopé Mn2+ a été développée. Les QDs obtenus possèdent un rendement quantique de 13% s’ils sont préparés en écoulement monophasique / In recent years, microfluidics has become an attractive technology for the continuous flow synthesis of colloidal nanocrystals. This technology allows a good control of the synthesis parameters, a good reproducibility and the possibility of the application on a large scale. In a first part, we have developed continuous and ecological syntheses of the ZIF-8 crystals for the large scale, either with a monophasic or a biphasic flow (water/alkane). The microfluidic technology allows the fast synthesis (10 min) of ZIF-8 crystals over a wide size range (from ca. 300 to 900 nm) simply by varying the experimental parameters (flow rates, temperature,…). ZIF-8 crystals with the stable rhombic dodecahedron shape, of sodalite structure and with a high specific surface area (ca. 1700 m2.g-1) were obtained. Next, the catalytic properties of ZIF-8 crystals were evaluated. These particles were demonstrated to be an efficient heterogeneous catalyst for the Knoevenagel synthesis of α,β-unsaturated cyanoesters and of 3-cyanocoumarins using 2-hydroxy aromatic aldehydes and ethyl cyanoacetate as starting materials (yields ranging from 89 to 95%). The ZIF-8 particles can be recycled at least five times with negligible changes in catalytic performances. In the second part, we synthesized the Mn2+ or Cu+-doped CdS QDs coated with a ZnS shell in a tubular microreactor using a monophasic or a biphasic flow (water/alkane). Various experimental parameters (time, temperature, pH, molar ratio, concentration and nature of the starting materials) were evaluated to optimize the optical properties of the dots. The obtained Mn2+ doped CdS QDs exhibited a photoluminescence emission related to the 4T1 → 6A1 transition with quantum yields higher than 10%. The introduction of a ZnS shell with the monophasic flow allows to improve the optical properties and to reduce the surface defects of the 6% Mn:CdS/ZnS QDs (strong emission at 590 nm and quantum yields of ca. 20%). The introduction of a ZnS shell on the surface of Cu doped CdS QDs does not significantly improve the quantum yields. Finally, the synthesis of Mn2+-doped ZnS QDs with monophasic or biphasic flow (water/alkane) was developed. The dots have a photoluminescence quantum yield of 13% if they are prepared in a monophasic water flow
229

Iontronic - Étude de dispositifs à effet de champ à base des techniques de grilles liquides ioniques / Iontronics - Field effect study of different devices, using techniques of ionic liquid gating

Seidemann, Johanna 20 October 2017 (has links)
Les liquides ioniques sont des fluides non volatiles, constitués de cations et d’anions, qui sont conducteurs ioniques, isolants électriques, et peuvent avoir des valeurs de capacité très élevées. Ces liquides sont susceptibles non seulement de remplacer les électrolytes solides, mais également de susciter des champs électriques intenses (>SI{10}{megavoltpercentimetre}) au sein d’une couche dite double couche électronique (electric double layer, EDL) à l’interface entre le liquide et le matériau sur lequel il est déposé. Ceci conduit à une injection de porteurs de charge bidimensionelle avec des densités allant jusqu’à SI{e15}{cm^{-2}}. Cet effet de grille remarquablement fort des liquides ioniques est réduit en présence d’états piégés ou de rugosité de surface. À cet égard, les dicalchogénures de métaux de transitions, de très haute qualité cristalline et atomiquement plats, font partis des semi-conducteurs les plus adaptés aux grilles EDL.Nous avons réalisé des transistors à effet de champ avec des EDL dans des nanotubes multi-couches de ce{WS2}, avec des performances comparables à celles de transistors EDL sur des ilots de ce{WS2}, et meilleurs que celles de nanotubes de ce{WS2} avec une grille solide. Nous avons obtenu des mobilités allant jusqu’à SI{80}{squarecentimetrepervoltpersecond} pour les porteurs n et p, et des ratios de courants on/off dépassant SI{e5}{} pour les deux polarités. Pour de forts dopages de type électron, les nanotubes ont un comportement métallique jusqu’à basse température. De plus, utiliser un liquide ionique permet de créer une jonction pn de manière purement électrostatique. En prenant avantage de cet effet, nous avons pu réaliser un transistor photoluminescent dans un nanotube.La possibilité de susciter de très forte densités de charges donne la possibilité d’induire des phases métalliques ou supraconductrices dans des semi-conducteurs a large bande interdite. Nous avons ainsi réussi à induire par effet de champ une phase métallique à basse température dans du diamant intrinsèque avec une surface hydrogénée, et nous avons obtenu un effet de champ dans du silicone dopé métallique.Les liquides ioniques offrent beaucoup d’avantages, mais leur champ d’application est encore réduit par l’instabilité du liquide, ainsi que par les courants de fuites et l’absorption graduelle d’impuretés. Un moyen efficace de s’affranchir de ces inconvénients, tout en conservant la possibilité d’induire de très fortes densités de porteurs, est de gélifier le liquide ionique. Nous sommes allés plus loin en fabriquant des gels ioniques modifiés, avec les cations fixés sur une seule surface et les anions libres de se mouvoir au sein du gel. Cet outil nous a permis de réaliser une nouvelle diode à effet de champ de faible puissance. / Ionic liquids are non-volatile fluids, consisting of cations and anions, which are ionically conducting and electrically insulating and hold very high capacitances. These liquids have the ability to not only to replace solid electrolytes, but to create strongly increased electric fields (>SI{10}{megavoltpercentimetre}) in the so-called electric double layer (EDL) on the electrolyte/channel interface, which leads to the injection of 2D charge carrier densities up to SI{e15}{cm^{-2}}. The remarkably strong gate effect of ionic liquids is diminished in the presence of trapped states and roughness-induced surface disorder, which points out that atomically flat transition metal dichalcogenides of high crystal quality are some of the semiconductors best suited for EDL-gating.We realised EDL-gated field-effect transistors based on multi-walled ce{WS2} nanotubes with operation performance comparable to that of EDL-gated thin flakes of the same material and superior to the performance of backgated ce{WS2} nanotubes. For instance, we observed mobilities of up to SI{80}{squarecentimetrepervoltpersecond} for both p- and n-type charge carriers and our current on-off ratios exceed SI{e5}{} for both polarities. At high electron doping levels, the nanotubes show metallic behaviour down to low temperatures. The use of an electrolyte as topgate dielectric allows the purely electrostatic formation of a pn-junction. We successfully fabricated a light-emitting transistor taking advantage of this utility.The ability of high charge carrier doping suggests an electrostatically induced metal phase or superconductivity in large gap semiconductors. We successfully induced low temperature metallic conduction into intrinsic diamond with hydrogen-terminated surface via field-effect and we observed a gate effect in doped, metallic silicon.Ionic liquids have many advantageous properties, but their applicability suffers from the instability of their liquid body, gate leakage currents and absorption of impurities. An effective way to bypass most of these problems, while keeping the ability of ultra-high charge carrier injection, is the gelation of ionic liquids. We even went one step further and fabricated modified ion gel films with the cations fixed on one surface and the anions able to move freely through the film. With this tool, we realised a novel low-power field-effect diode.
230

Highly coherent III-V-semiconductor laser emitting phase-, amplitude- and polarization-structured light for advanced sensing applications : Vortex, SPIN, Feedback Dynamics / Source laser de haute cohérence, à base semiconducteurs III-V émettant des modes à phase, amplitude et polarisation structurés pour les applications de mesure avancées : vortex, Spin et dynamique de rétro-injection optique

Seghilani, Mohamed Seghir 07 October 2015 (has links)
Le but de ce travail de thèse est l'étude et la réalisation de sources laser de haute cohérence à semi-conducteurs III-V basées sur la technologie Vertical-External-Cavity-Surface-Emitting-Laser (VeCSEL) à puits quantiques (matériaux InGaAs/GaAs/AlGaAs), émettant dans le proche-IR sur des modes transverses du type Laguerre Gauss (LG) et Hermite Gauss (HG) d'ordre supérieur. Ces modes ont des structures de phase, d'amplitude et de polarisation complexes qui leur vaut souvent l'appellation de 'lumière complexe' ou 'structurée'. Nous mettrons l'accent particulièrement sur les modes LG possédant un moment angulaire orbital, et sur une source contrôlant le spin du photon. Ce type de sources laser présente un grand intérêt pour le développement de systèmes ou capteurs optiques dans différents domaines, tels que les télécommunications, les pinces optiques, et le piégeage et le refroidissement d'atomes, ainsi que la métrologie optique.Nous sommes amenés à étudier les modes propres des cavités optiques de haute finesse. Nous décrivons ces modes suivant les trois "axes" définissant l'état de photon: distributions longitudinal (fréquentiel), transverse (spatial) et de polarisation. Pour chacun de ces trois axes nous étudions les ingrédients physiques qui régissent la formation des modes, et développons les outils théoriques nécessaires à la manipulation et le calcul des états propres dans des cavités modifiées.Dans une seconde étape, puisque la sélection de modes dans une cavité laser passe par l'interaction matière-rayonnement, nous nous penchons sur la dynamique de ces systèmes en écrivant les équations de Maxwell-Bloch pour notre laser. Ces équations nous permettent d'étudier le rôle de la dynamique temporelle dans la sélection des modes lasers et le chemin vers l'état stationnaire. Nous nous appuyons sur ces modèles pour expliquer certaines questions non/mal comprises, et qui mènent parfois à des interprétations erronées dans la littérature scientifique, notamment la sélection spontanée du sens de rotation du front de phase dans les modes vortex.Une partie de ce travail est consacré au développement et la caractérisation d'une technologie à semiconducteurs III-V, qui permet de sélectionner efficacement un mode laser donné, dans la base propre. Nous développons une approche basée sur des méta-matériaux intégrés à la structure de gain (le 1/2-VCSEL) et qui agit comme un masque de phase et d'amplitude. Nous nous appuyons sur cette technologie pour réaliser une cavité laser qui lève la dégénérescence des modes vortex contrarotatif et brise légèrement leur symétrie, ces deux étapes sont cruciales pour pourvoir sélectionner la charge et le signe du vortex généré et stabilisé. Afin de contrôler les modes de polarisation nous étudions les propriétés de polarisation de la cavité et du milieu à gain à puits quantique : la biréfringence, le dichroïsme, et le temps de spin flip dans les puits quantiques. Nous exploitons ces paramètres pour générer les états de polarisation désirés : linéaire stable, circulaire avec un moment angulaire de spin contrôlé par le spin de pompage. À la fin nous présentons la conception et la réalisation d'un capteur laser sous rétro-injection optique (self-mixing) pour la vélocimétrie linéaire et rotationnelle, en utilisant une source laser émettant sur un mode vortex. Ce capteur montre un exemple de mesure inaccessible avec un laser conventionnel. Il tire profit des propriétés uniques des modes vortex pour mesurer simultanément la vitesse linéaire et angulaire des particules. Nous finirons cette partie par l'étude d'un autre design de capteur laser possible pour la granulométrie, utilisant d'autres types de modes laser générés dans ce travail. / The goal of this PhD thesis is the study, design and the development of highly coherent III-V semiconductor laser sources based on multi-quantum wells (InGaAs/GaAs/AlGaAs) Vertical-External-Cavity-Surface-Emitting-Laser (VeCSEL), operating in the near infra-red (IR), and emitting high order Laguerre-Gauss (LG) and Hermite-Gauss (HG) modes. These modes, usually called ‘complex' or ‘structured' light, have a complex wavefronts, amplitudes and polarizations structures. We especially focus on lasers with modes carrying OAM, and also on sources with controlled photon's spin. These modes are of great interest for the development optical systems in several fields, such as telecommunications, optical tweezers, atom trapping and cooling, and sensing applications. We need to study the light eigenstates in high-finesse laser cavities, we describe these eigenstates with respect to the three axis of the light that define the photon state: longitudinal (frequency), transverse (spatial), and polarization. For each one of these axis, we study the physical ingredients governing mode formation, and develop the theoretical tools required for the calculation of the eigenmodes in non-conventional cavities.In a second step, as the mode selection in a laser involves light-matter interaction, we focus on dynamic study by writing the semi classical Maxwell-Bloch equations for our lasers. These equations allow us to study the role of temporal dynamics in laser mode selection, as well as the path the steady state. We use these theoretical models to explain some none /poorly understood questions, and which lead sometimes to erroneous interpretations in the scientific literature. We see in particular the question of the spontaneous selection of the wavefront handedness in vortex modes. We also address the development and the characterization of a III-V semiconductor based technology that enables us to efficiently select the wanted mode in the eigenbasis. We adopt an approach based on metamaterials integrated on the semiconductor gain structure (1/2- VCSEL) that play the role of a phase and amplitude mask. We use this technology to build a laser cavity that lifts the degeneracy and breaks the symmetry between vortex modes with opposite handedness. These two effects are of paramount importance when one wants to select a vortex mode with a well-defined charge and handedness. In order to control the polarization modes, we study the polarization properties of the optical cavity and the quantum-well based gain medium: the birefringence the dichroism, and the spin-flip time in the quantum wells. We make use of these elements to generate the wanted polarization states: stable linear, and circular carrying an angular momentum controlled via the pump spin. In the end, we present the design and building of a feedback laser sensor (self-mixing) for linear and rotational velocimetry, using a laser source emitting a vortex beam. This sensor shows an example of a measurement inaccessible using conventional laser sources. It takes advantage of the orbital angular momentum of the vortex beam to measure both translational and rotational velocities using the Doppler effect. We end this part by presenting other possible sensor designs for particle sizing, using other exotic modes generated in this work.

Page generated in 0.0608 seconds