• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 12
  • 8
  • 2
  • 2
  • 1
  • Tagged with
  • 108
  • 108
  • 24
  • 20
  • 18
  • 18
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Terahertz spectroscopy of graphene and other two-dimensional materials

Docherty, Callum James January 2014 (has links)
In this thesis, two-dimensional materials such as graphene are tested for their suitability for opto-electronic applications using terahertz time domain spectroscopy (THz-TDS). This ultrafast all-optical technique can probe the response of novel materials to photoexcitation, and yield information about the dynamics of the material systems. Graphene grown by chemical vapour deposition (CVD) is studied using optical-pump THz-probe time domain spectroscopy in a variety of gaseous environments in Chapter 4. The photoconductivity response of graphene grown by CVD is found to vary dramatically depending on which atmospheric gases are present. Adsorption of these gases can open a local bandgap in the material, allowing stimulated emission of THz radiation across the gap. Semiconducting equivalents to graphene, molybdenum disulphide (MoS<sub>2</sub>) and tungsten diselenide (WSe<sub>2</sub>), grown by CVD, are investigated in Chapter 5. These members of the transition metal dichalcogenide family show sub-picosecond responses to photoexcitation, suggesting promise for use in high-speed THz devices. In Chapter 6, an alternative production route to CVD is studied. Liquid-phase exfoliation offers fast, easy production of few-layer materials. THz spectroscopy reveals that the dynamics of these materials after photoexcitation are remarkably similar to those in CVD-grown materials, offering the potential of cheaper materials for future devices. Finally in Chapter 7, it is shown that carbon nanotubes can be used to make ultrafast THz devices. Unaligned, semiconducting single walled carbon nanotubes can be photoexcited to produce an ultrafast, dynamic THz polariser. The work in this thesis demonstrates the potential for these novel materials in future opto-electronic applications. THz spectroscopy is shown to be an important tool for the characterisation of new materials, providing information that can be used to understand the dynamics of materials, and improve production methods.
42

Quaternary nanocrystal solar cells

Cattley, Christopher Andrew January 2016 (has links)
This thesis studies quaternary chalcogenide nanocrystals and their photovoltaic applications. A temperature-dependent phase change between two distinct crystallographic phases of stoichiometric Cu<sub>2</sub>ZnSnS<sub>4</sub> is investigated through the development of a one pot synthesis method. Characterisation of the Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystals was performed using absorption spectroscopy, transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). An investigation was conducted into the effects of using hexamethyldisilathiane (a volatile sulphur precursor) in the nucleation of small (<7nm), mono-dispersed and solution-stable quaternary Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystals. A strategy to synthesize high quality thermodynamically stable kesterite Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystals is established, which subsequently enabled the systematic study of Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystal formation mechanisms, using optical characterization, XRD, TEM and Raman spectroscopy. Further studies employed scanning transmission electron microscopy (STEM) energy dispersive x-ray (EDX) mapping to examine the elemental spatial distributions of Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystals, in order to analyse their compositional uniformity. In addition, the stability of nanocrystals synthesised using alternative ligands is investigated using Fourier transform infrared spectroscopy, without solution based ligand substitution protocol is used to replace aliphatic reaction ligands with short, aromatic pyridine ligands in order to further improve Cu<sub>2</sub>ZnSnS<sub>4</sub> colloid stability. A layer-by-layer spin coating method is developed to fabricate a semiconductor heterojunction, using CdS as an n-type window, which is utilised to investigate the photovoltaic properties of Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystals. Finally, three novel passivation techniques are investigated, in order to optimise the optoelectronic properties of the solar cells to the point where a power conversion efficiency (PCE) of 1.00±0.04% is achieved. Although seemingly modest when compared to the performance of leading devices (PCE>12%) this represents one of the highest obtained for a Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystal solar cell, fabricated completely under ambient conditions at low temperatures.
43

Transition-metal doped Bi2Se3 and Bi2Te3 topological insulator thin films

Collins-McIntyre, Liam James January 2015 (has links)
Topological insulators (TIs) are recently predicted, and much studied, new quantum materials. These materials are characterised by their unique surface electronic properties; namely, behaving as band insulators within their bulk, but with spin-momentum locked surface or edge states at their interface. These surface/edge crossing states are protected by the underlying time-reversal symmetry (TRS) of the bulk band structure, leading to a robust topological surface state (TSS) that is resistant to scattering from impurities which do not break TRS. Their surface band dispersion has a characteristic crossing at time reversal invariant momenta (TRIM) called a Dirac cone. It has been predicted that the introduction of a TRS breaking effect, through ferromagnetic order for instance, will open a band-gap in this Dirac cone. It can be seen that magnetic fields are not time reversal invariant by considering a solenoid. If time is reversed, the current will also reverse in the solenoid and so the magnetic field will also be reversed. So it can be seen that magnetic fields transform as odd under time reversal, the same will be true of internal magnetisation. By manipulating this gapped surface state a wide range of new physical phenomena are predicted, or in some cases, already experimentally observed. Of particular interest is the recently observed quantum anomalous Hall effect (QAHE) as well as, e.g., topological magneto-electric effect, surface Majorana Fermions and image magnetic monopoles. Building on these novel physical effects, it is hoped to open new pathways and device applications within the emerging fields of spintronics and quantum computation. This thesis presents an investigation of the nature of magnetic doping of the chalcogenide TIs Bi<sub>2</sub>Se<sub>3</sub> and Bi<sub>2</sub>Te<sub>3</sub> using 3d transition-metal dopants (Mn and Cr). Samples were grown by molecular beam epitaxy (MBE), an ideal growth method for the creation of high-quality thin film TI samples with very low defect densities. The grown films were investigated using a range of complementary lab-based and synchrotron-based techniques to fully resolve their physical structure, as well as their magnetic and electronic properties. The ultimate aim being to form a ferromagnetic ground state in the insulating material, which may be expanded into device applications. Samples of bulk Mn-doped Bi<sub>2</sub>Te<sub>3</sub> are presented and it is shown that a ferromagnetic ground state is formed below a measured T<sub>C</sub> of 9-13 K as determined by a range of experimental methodologies. These samples are found to have significant inhomogeneities within the crystal, a problem that is reduced in MBE-grown crystals. Mn-doped Bi<sub>2</sub>Se<sub>3</sub> thin films were grown by MBE and their magnetic properties investigated by superconducting quantum interference device (SQUID) magnetometry and x-ray magnetic circular dichroism (XMCD). These reveal a saturation magnetisation of 5.1 &mu;<sub>B</sub>/Mn and show the formation of short-range magnetic order at 2.5 K (from XMCD) with indication of a ferromagnetic ground state forming below 1.5 K. Thin films of Cr-doped Bi<sub>2</sub>Se<sub>3</sub> were grown by MBE, driven by the recent observation of the QAHE in Cr-doped (Bi<sub>1−x</sub>Sb<sub>x</sub>)<sub>2</sub>Te<sub>3</sub>. Investigation by SQUID shows a ferromagnetic ground state below 8.5 K with a saturation magnetisation of 2.1 &mu;<sub>B</sub>/Cr. Polarised neutron reflectometry shows a uniform magnetisation profile with no indication of surface enhancement or of a magnetic dead layer. Further studies by extended x-ray absorption fine structure (EXAFS) and XMCD elucidate the electronic nature of the magnetic ground state of these materials. It is found that hybridisation between the Cr d and Se p orbitals leads to the Cr being divalent when doping on the Bi<sup>3&plus;</sup> site. This covalent character to the electronic structure runs counter to the previously held belief that divalent Cr would originate from Cr clusters within the van der Waals gap of this material. The work overall demonstrates the formation of a ferromagnetic ground state for both Cr and Mn doped material. The transition temperature, below which ferromagnetic order is achieved, is currently too low for usable device applications. However, these materials provide a promising test bed for new physics and prototype devices.
44

Charge Storage Effect in a Trilayer Structure Comprising Germanium Nanocrystals

Heng, C.L., Choi, Wee Kiong, Chim, Wai Kin, Teo, L.W., Ho, Vincent, Tjiu, W.W., Antoniadis, Dimitri A. 01 1900 (has links)
A metal-insulator-semiconductor (MIS) device with a trilayer insulator structure consisting of sputtered SiO₂ (~50nm)/evaporated pure germanium (Ge) layer (2.4nm)/rapid thermal oxide (~5nm) was fabricated on a p-type Si substrate. The MIS device was rapid thermal annealed at 1000°C. Capacitance-voltage (C-V) measurements showed that, after rapid thermal annealing at 1000°C for 300s in Ar, the trilayer device exhibited charge storage property. The charge storage effect was not observed in a device with a bilayer structure without the Ge middle layer. With increasing rapid thermal annealing time from 0 to 400s, the width of the C-V hysteresis of the trilayer device increased significantly from 1.5V to ~11V, indicating that the charge storage capability was enhanced with increasing annealing time. High-resolution transmission electron microscopy results confirmed that with increasing annealing time, the 2.4nm amorphous middle Ge layer crystallized gradually. More Ge nanocrystals were formed and the crystallinity of the Ge layer improved as the annealing time was increased. When the measurement temperature was increased from –50°C to 150°C, the width of the hysteresis of the MIS device reduced from ~10V to ~6V. This means that the charge storage capability of the trilayer structure decreases with increasing measurement temperature. This is due to the fact that the leakage current in the trilayer structure increases with increasing measurement temperature. / Singapore-MIT Alliance (SMA)
45

Predictive modeling of device and circuit reliability in highly scaled CMOS and SiGe BiCMOS technology

Moen, Kurt Andrew 13 April 2012 (has links)
The advent of high-frequency silicon-based technologies has enabled the design of mixed-signal circuits that incorporate analog, RF, and digital circuit components to build cost-effective system-on-a-chip solutions. Emerging applications provide great incentive for continued scaling of transistor performance, requiring careful attention to mismatch, noise, and reliability concerns. If these mixed-signal technologies are to be employed within space-based electronic systems, they must also demonstrate reliability in radiation-rich environments. SiGe BiCMOS technology in particular is positioned as an excellent candidate to satisfy all of these requirements. The objective of this research is to develop predictive modeling tools that can be used to design new mixed-signal technologies and assess their reliability on Earth and in extreme environments. Ultimately, the goal is to illuminate the interaction of device- and circuit-level reliability mechanisms and establish best practices for modeling these effects in modern circuits. To support this objective, several specific areas have been targeted first, including a TCAD-based approach to identify performance-limiting regions in SiGe HBTs, measurement and modeling of carrier transport parameters that are essential for predictive TCAD, and measurement of device-level single-event transients to better understand the physical origins and implications for device design. These tasks provide the foundation for the bulk of this research, which addresses circuit-level reliability challenges through the application of novel mixed-mode TCAD techniques. All of the individual tasks are tied together by a guiding theme: to develop a holistic understanding of the challenges faced by emerging broadband technologies by coordinating results from material, device, and circuit studies.
46

Design and theoretical study of Wurtzite GaN HEMTs and APDs via electrothermal Monte Carlo simulation

Sridharan, Sriraaman 09 January 2013 (has links)
A self-consistent, full-band, electrothermal ensemble Monte Carlo device simulation tool has been developed. It is used to study charge transport in bulk GaN, and to design, analyze, and improve the performance of AlGaN/GaN high electron mobility transistors (HEMTs) and avalanche photodiodes (APDs). Studies of electron transport in bulk GaN show that both peak electron velocity and saturated electron velocity are higher for transport in the basal plane than along the c-axis. Study of the transient electron velocity also shows a clear transit-time advantage for electron devices exploiting charge transport perpendicular to the c-axis. The Monte Carlo simulator also enables unique studies of transport under the influence of high free carrier densities but with low doping density, which is the mode of transport in AlGaN/GaN HEMTs. Studies of isothermal charge transport in AlGaN/GaN HEMTs operating at high gate bias show a drain current droop with increasing drain-source bias. The cause of the droop is investigated and a design utilizing source- or gate-connected field plate is demonstrated to eliminate the drain current droop. Electrothermal aspects of charge transport in AlGaN/GaN HEMTs are also investigated, and the influence of non-equilibrium acoustic and optical phonons is quantified. The calculated spatial distribution of non-equilibrium phonon population reveals a hot spot in the channel that is localized at low drain-source bias, but expands towards the drain at higher bias, significantly degrading channel mobility. Next, Geiger mode operation of wurtzite GaN-based homojunction APDs is investigated. The influences of dopant profile, active region thickness, and optical absorption profile on single photon detection efficiency (SPDE) are quantified. Simulations of linear mode gain as a function of multiplication region thickness and doping profile reveal that weakly n-type active regions may be exploited to achieve higher avalanche gain, without penalty to either applied bias or active region thickness. A separate absorption and multiplication APD (SAM-APD) utilizing a AlGaN/GaN heterojunction is also investigated. The presence of strong piezo-electric and spontaneous polarization charges at the heterojunction enables favorable electric field profile in the device to reduce dark current, improve excess noise factor, improve quantum efficiency, and improve breakdown probability. To maximize SPDE, a new device structure with a buried absorber is proposed and improved SPDE is demonstrated. Lastly, a new approach for the direct generation of self-sustaining millimeter-wave oscillations is proposed. In contrast to Gunn diodes, which exploit a bulk-like active region, periodic oscillation is achieved in the proposed structures through the creation, propagation and collection of traveling dipole domains supported by fixed polarization charge and the associated two-dimensional electron gas along the plane of a polar heterojunction. Numerical simulation of induced oscillations in a simple triode structure commonly used for AlGaN/GaN HEMTs reveals two distinct modes of self-sustaining millimeter-wave oscillation.
47

Optical and transport properties of GaN and its lattice matched alloys

Shishehchi, Sara 21 June 2016 (has links)
The study of carrier dynamics in wide band gap semiconductors is of great importance for UV detectors and emitters which are expected to be the building blocks for optoelectronic applications and high voltage electronics. On the experimental side, the progress made in the past two decades in generating subpicosecond laser pulses, resulted in numerous experiments that gave insight into the carrier dynamics in semiconductors. From the theoretical standpoint, the study of carrier interactions together with robust simulation methods, such as Monte-Carlo, provided great progress toward explaining the experimental results. These studies immensely improve our understanding of time scales of carrier recombination, relaxation and transport in semiconductor materials and devices which lead to optimizing the operation of optoelectronic devices, more specifically, emitters and detectors. Wide band gap materials having high breakdown field, wide band gap energy and high saturation velocity are among the most important semiconductors employed in the active layer of LEDs and lasers. GaN , its alloys, and ZnO are among the most important materials in semiconductor devices. Moreover, the use of lattice matched layers based on InAlN or InAlGaN is an alternative design approach which could mitigate the effect of polarization and enable growing thicker layers due to the higher structural quality. We first perform the study of carrier dynamics generated by ultrafast laser pulses in bulk GaN and ZnO materials to investigate the temperature dependent luminescence rise time. The obtained results are compared to the experimental results which show an excellent agreement. In this work, we use Monte Carlo method to evaluate the distribution of carriers considering the interaction of carriers with other carriers and also with polar optical phonons in the system. Considering the ongoing research about the advantages of lattice matched nitride based material systems, we also studied the properties of GaN layers lattice matched to InAlN and InAlGaN. As an application, we utilized the GaN/InAlGaN material system to study the carrier dynamics in Quantum Cascade Lasers. Furthermore, due to the superior properties of GaN which makes it an excellent candidate in power electronic applications, we also design and simulate an advanced vertical trench power MOSFET using drift diffusion and Monte Carlo models and characterize the performance of the device.
48

Advances in hybrid solar cells : from dye-sensitised to perovskite solar cells

Noel, Nakita K. January 2014 (has links)
This thesis presents a study of hybrid solar cells, specifically looking at various methods which can be employed in order to increase the power conversion efficiency of these devices. The experiments and results contained herein also present a very accurate picture of how rapidly the field of hybrid solar cells has progressed within the past three years. Chapters 1 and 2 present the background and motivation for the investigations undertaken, as well as the relevant theory underpinning solar cell operation. Chapter 2 also gives a brief review of the literature pertinent to the main types of devices investigated in this thesis; dye-sensitised solar cells, semiconductor sensitized solar cells and perovskite solar cells. Descriptions of the synthetic procedures, as well as the details of device fabrication and any measurement techniques used are outlined in Chapter 3. The first set of experimental results is presented in Chapter 4. This chapter outlines the synthesis of mesoporous single crystals (MSCs) of anatase TiO<sub>2</sub> as well as an investigation of its electronic properties. Having shown that this material has superior electronic properties to the conventionally used nanoparticle films, they were then integrated into low temperature processed dye-sensitised solar cells and achieved power conversion efficiencies of &GT; 3&percnt;, exhibiting electron transport rates which were orders of magnitude higher than those obtained for the high temperature processed control films. Chapter 5 further investigates the use of MSCs in photovoltaic devices, this time utilising a more strongly absorbing inorganic sensitiser, Sb<sub>2</sub>S<sub>3</sub>. Utilising the readily tunable pore size of MSCs, these Sb<sub>2</sub>S<sub>3</sub> devices showed an increase in voltage and fill factor which can be attributed to a decrease in recombination within these devices. This chapter also presents the use of Sb<sub>2</sub>S<sub>3</sub> in the meso-superstructured configuration. This device architecture showed consistently higher voltages suggesting that in this architecture, charge transport occurs through the absorber and not the mesoporous scaffold. Chapters 6 and 7 focus on the use of hybrid organic-inorganic perovskites in photovoltaic devices. In Chapter 6 the mixed halide, lead-based perovskite, CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3-x</sub>Cl<sub>x</sub> is employed in a planar heterojunction device architecture. The effects of Lewis base passivation on this material are investigated by determining the photoluminescence (PL) lifetimes and quantum efficiencies of treated and untreated films. It is found that passivating films of this material using Lewis bases causes an increase in the PLQE at low fluences as well as increasing the PL lifetime. By globally fitting these results to a model the trap densities are extracted and it is found that using these surface treatments decreases the trap density of the perovskite films. Finally, these treatments are used in complete solar cells resulting in increased power conversion efficiencies and an improvement in the stabilised power output of the devices. Chapter 7 describes the materials synthesis and characterisation of the tin-based perovskite CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> and presents the first operational, lead-free perovskite solar cell. The work presented in this thesis describes significant advances in the field of hybrid solar cells, specifically with regards to improvements made to the nanostructured electrode, and the development and implementation of more highly absorbing sensitizers. The improvements discussed here will prove to be quite important in the drive towards exploiting solar power as a clean, affordable source of energy.
49

Statistical Modeling Of Transistor Mismatch Effects In 100nm CMOS Devices

Srinivasaiah, H C 07 1900 (has links) (PDF)
No description available.
50

Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices

Osei-Yiadom, Eric 12 1900 (has links)
Low-dielectric (k) films are one of the performance drivers for continued scaling of integrated circuit devices. These films are needed in microelectronic device interconnects to lower power consumption and minimize cross talk between metal lines that "interconnect" transistors. Low-k materials currently in production for the 45 and 65 nm node are most often organosilicate glasses (OSG) with dielectric constants near 2.8 and nominal porosities of 8-10%. The next generation of low-k materials will require k values 2.6 and below for the 45 nm device generation and beyond. The continuous decrease in device dimensions in ultra large scale integrated (ULSI) circuits have brought about the replacement of the silicon dioxide interconnect dielectric (ILD), which has a dielectric constant (k) of approximately 4.1, with low dielectric constant materials. Lowering the dielectric constant reduces the propagation delays, RC constant (R = the resistance of the metal lines; C = the line capacitance), and metal cross-talk between wires. In order to reduce the RC constants, a number of low-k materials have been studied for use as intermetal dielectrics. The k values of these dielectric materials can be lowered by replacing oxide films with carbon-based polymer films, incorporating hydrocarbon functional groups into oxide films (SiOCH films), or introducing porogens in the film during processing to create pores. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of plasma, temperature and chemical reactions on low-k SiOCH films. Plasma ash processes have been known to cause hydrophobic films to lose their hydrophobic methyl groups, rendering them to be hydrophilic. This allows the films to readily absorb moisture. Supercritical carbon dioxide (SC-CO2) can be used to transport silylating agents, hexamethyldisilazane (HMDS) and diethoxy-dimethlysilane (DEDMS), to functionalize the damaged surfaces of the ash-damaged films. The thermal stability of the low-k films after SC-CO2 treatment is also discussed by performing in-situ heat treatments on the films. UV curing has been shown to reduce the amount of pores while showing only a limited change dielectric constant. This work goes on to describe the effect of UV curing on low-k films after exposing the films to supercritical carbon dioxide (CO2) in combination with tetramethylorthosilicate (TMOS).

Page generated in 0.0765 seconds