• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A Selective Encapsulation Solution For Packaging An Optical Micro Electro Mechanical System

Bowman, Amy Catherine 08 January 2002 (has links)
This work developed a process to provide physical, electrical, and environmental protection to the electrical lead system of an optical switch device. A literature review was conducted to find materials and processes suitable to the stress-sensitive, high voltage characteristics of many optical switch devices. An automatic dispensing dam and fill process, and three candidate materials (two epoxy and one silicone) were selected for investigation. Experimental and analytical techniques were used to evaluate the materials. Methods applied included interferometric die warpage measurements, electrochemical migration resistance tests (ECMT), thermal cycling, and finite element analysis. The silicone dam and fill system was selected based upon the results of die warpage and electrochemical migration resistance tests. A modified, selective dam and fill process was developed and preliminary reliability testing was performed. The paper provides detailed instructions for successful encapsulation of the optical switch's lead system.
32

Low Power Reconfigurable Microwave Circuts Using RF MEMS Switches for Wireless Systems

Zheng, Guizhen 31 May 2005 (has links)
This dissertation presents the research on several different projects. The first project is a via-less CPW RF probe pad to microstrip transition; The second, the third, and the fourth one are reconfigurable microwave circuits using RF MEMS switches: an X-band reconfigurable bandstop filter for wireless RF frontends, an X-band reconfigurable impedance tuner for a class-E high efficiency power amplifier using RF MEMS switches, and a reconfigurable self-similar antenna using RF MEMS switches. The first project was developed in order to facilitate the on-wafer measurement for the second and the third project, since both of them are microstrip transmission line based microwave circuits. A thorough study of the via-less CPW RF probe pad to microstrip transition on silicon substrates was performed and general design rules are derived to provide design guidelines. This research work is then expanded to W-band via-less transition up to 110 GHz. The second project is to develop a low power reconfigurable monolithic bandstop filter operating at 8, 10, 13, and 15 GHz with cantilever beam capacitive MEMS switches. The filter contains microstrip lines and radial stubs that provide different reactances at different frequencies. By electrically actuating different MEMS switches, the different reactances from different radial stubs connecting to these switches will be selected, thus, the filter will resonate at different frequencies. The third project is to develop a monolithic reconfigurable impedance tuner at 10 GHz with the cantilever DC contact MEMS switch. The impedance tuner is a two port network based on a 3bit-3bit digital design, and uses 6 radial shunt stubs that can be selected via integrated DC contact MEMS switches. By selecting different states of the switches, there will be a total of 2^6 = 64 states, which means 64 different impedances will be generated at the output port of the tuner. This will provide a sufficient tuning range for the output port of the power amplifier to maximize the power efficiency. The last project is to integrate the DC contact RF MEMS switches with self-similar planar antennas, to provide a reconfigurable antenna system that radiates with similar patterns over a wide range of frequencies.
33

Model predictive control of AC-to-AC converter voltage regulator

Chewele, Youngie Klyv 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The development of fast and efficient processors, programmable devices and high power semiconductors has led to the increased use of semiconductors directly in the power supply path in order to achieve strict power quality standards. New and advanced algorithms are used in the process and calculated on-line to bring about the required fast response to voltage variations. Losses in high voltage semiconductors increase with increased operating frequencies. A balance between semiconductor power losses and power quality is achieved through control of power semiconductor switching frequencies. A predictive control algorithm to achieve high power quality and limit the power losses in the high power semiconductor switches through switching frequency control is discussed for a tap switched voltage regulator. The quality of power, voltage regulator topology and the control algorithm are discussed. Simulation results of output voltage and current are shown when the control algorithm is used to control the regulator. These results are verified by practical measurements on a synchronous buck converter. / AFRIKAANSE OPSOMMING: Die ontwikkeling van vinnige en doeltreffende verwerkers, programmeerbare toestelle en hoëdrywings halfgeleiers het gelei tot 'n groter gebruik van halfgeleiers direk in die kragtoevoer pad om streng elektriese toevoer kwaliteit standaarde te bereik. Nuwe en gevorderde algoritmes word gebruik in die proses en word aan-lyn bereken om die nodige vinnige reaksie tot spanningswisselinge te gee. Verliese in hoë-spannings halfgeleiers verhoog met hoër skakel frekwensies. 'n Balans tussen die halfgeleier drywingsverliese en spanningskwalteit is behaal deur die skakel frekwensie in ag te neem in die beheer. 'n Voorspellinde-beheer algoritme om ‘n hoë toevoerkwaliteit te bereik en die drywingsverliese in die hoëdrywingshalfgeleier te beperk, deur skakel frekwensie te beheer, is bespreek vir 'n tap-geskakelde spanning reguleerder. Die toevoerkwaliteit, spanningsreguleerder topologie en die beheer algoritme word bespreek. Simulasie resultate van die uittree-spanning en stroom word getoon wanneer die beheer algoritme gebruik word om die omsetter te beheer. Hierdie resultate is deur praktiese metings op 'n sinkrone afkapper.
34

Design, Fabrication and Characterization of Low Voltage Capacitive RF MEMS Switches

Shekhar, Sudhanshu January 2015 (has links) (PDF)
This dissertation presents the design, fabrication, and characterization of low-voltage capacitive RF MEMS switches. Although, RF MEMS switches have shown superior performance as compared to the existing solid-state semiconductor switches and are viable alternate to the present and the future communication systems, not been able to match the commercial standards due to their poor reliability. Dielectric charging due high actuation is one of the major concerns that limit the reliability of these switches. Hence, the focus of this thesis is on the development of low actuation voltage RF MEMS switches without compromising much on their RF and dynamic performances i.e., low insertion loss and high isolation. Four different switch topologies are studied and discussed. Electromechanical and electromagnetic modelling is presented to study the effect of various components that comprise a MEMS switch on the transient and the RF behaviour. The analytical expressions for switching and release times are established in order to estimate the switching and release times. An in-house developed surface micromachining process is adapted for the micro fabrication. This process eliminates the need for an extra mask used for the anchors and restricts the overall process to four-masks only. These switches are fabricated on 500 µm thick glass substrate. A 0.5 µm thick gold film is used as the structural material. For the final release of the switch, chemical wet etching technique is employed. The fabricated MEMS switches are characterized mechanically and electrically by measuring mechanical resonant frequency, quality factor, pull-in, and pull-up voltages. Since, low actuation voltage switches have slow response time. One of the key objectives of this thesis is to realize switches with fast response time at low actuation voltage. Measurements are performed to estimate the switching and release times. The measured Q-factors of switches are found to be in between 1.1 -1.4 which is the recommended value for Q in MEMS switches for a suppressed oscillation after the release. Furthermore, the effect of hole size on the switching dynamics is addressed. RF measurements are carried out to measure the S-parameters in order to quantify the RF performance. The measured results demonstrate that these switches need low actuation voltage in range of 4.5 V to 8.5 V for the actuation. The measured insertion loss less than -0.8 dB and isolation better than 30 dB up to 40 GHz is reported. In addition, the robustness of realized switches is tested using in-house developed Lab View-based automated measurement test set-up. The reliability test analysis shows no degradation in the RF performance even after 10 millions of switching cycles. Overall yield of 70 -80% is estimated in the present work. Finally, the experimentally measured results presented in this work prove the successful development of low actuation voltage capacitive RF MEMS switches and also offers that even with 0.5 µm thick gold film better reliability for MEMS switches can be achieved.
35

Energy conversion unit with optimized waveform generation

Sajadian, Sally January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The substantial increase demand for electrical energy requires high efficient apparatus dealing with energy conversion. Several technologies have been suggested to implement power supplies with higher efficiency, such as multilevel and interleaved converters. This thesis proposes an energy conversion unit with an optimized number of output voltage levels per number of switches nL=nS. The proposed five-level four-switch per phase converter has nL=nS=5/4 which is by far the best relationship among the converters presented in technical literature. A comprehensive literature review on existing five-level converter topologies is done to compare the proposed topology with conventional multilevel converters. The most important characteristics of the proposed configuration are: (i) reduced number of semiconductor devices, while keeping a high number of levels at the output converter side, (ii) only one DC source without any need to balance capacitor voltages, (iii) high efficiency, (iv) there is no dead-time requirement for the converters operation, (v) leg isolation procedure with lower stress for the DC-link capacitor. Single-phase and three-phase version of the proposed converter is presented in this thesis. Details regarding the operation of the configuration and modulation strategy are presented, as well as the comparison between the proposed converter and the conventional ones. Simulated results are presented to validate the theoretical expectations. In addition a fault tolerant converter based on proposed topology for micro-grid systems is presented. A hybrid pulse-width-modulation for the pre-fault operation and transition from the pre-fault to post-fault operation will be discussed. Selected steady-state and transient results are demonstrated to validate the theoretical modeling.

Page generated in 0.1015 seconds