Spelling suggestions: "subject:"semicontinuidade"" "subject:"semicontinuidad""
1 |
"Comportamento assintótico de problemas parabólicos em domínios tipo Dumbbell" / Assimptotic Behavior for parabolic problems in Dumbbell domainsCruz, German Jesus Lozada 12 January 2004 (has links)
O propósito deste trabalho é estudar a dinâmica assintótica de problemas parabólicos em domínios tipo dumbbell. Para isto primeiro estudaremos a semi-continuidade superior de atratores para problemas parabólicos com condição de fronteira do tipo Neumann homogênea e depois estudaremos a existência de equilíbrios estáveis não-constantes para problemas de reação-difusão com condições de fronteira tipo Neumann não-lineares. / The aim of this work is to study the asymptotic dynamics of parabolic problems in dumbbell type domains. To that end firstly, we study upper semicontinuity of attractors for parabolic problems with homogeneous Neumann boundary conditions and afterwards we study the existence of stable nonconstant equilibria for reaction-diffusion problems with nonlinear Neumann boundary conditions.
|
2 |
Existência de atrator para problemas com operadores monótonos e dominados pelo p-Laplaciano com difusãoCouto, Thays Regina Santana 31 March 2016 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-10-21T12:07:15Z
No. of bitstreams: 1
DissTRSC.pdf: 1059064 bytes, checksum: e90e2f60e1b722ad60105cfcdea16cc8 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:53:04Z (GMT) No. of bitstreams: 1
DissTRSC.pdf: 1059064 bytes, checksum: e90e2f60e1b722ad60105cfcdea16cc8 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:53:11Z (GMT) No. of bitstreams: 1
DissTRSC.pdf: 1059064 bytes, checksum: e90e2f60e1b722ad60105cfcdea16cc8 (MD5) / Made available in DSpace on 2016-11-08T18:53:17Z (GMT). No. of bitstreams: 1
DissTRSC.pdf: 1059064 bytes, checksum: e90e2f60e1b722ad60105cfcdea16cc8 (MD5)
Previous issue date: 2016-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This work is about the upper semicontinuity of the family of global attractors associated to nonlinear reaction diffusion equations whose principal part is determined by maximal operator monotonous governed by degenerate p-Laplacian in which the diffusion d blows up in localized regions inside the domain. / Este trabalho é sobre a semicontinuidade superior de uma família de atratores globais associados a equações de reação-difusão, não-lineares, cujo termo principal é determinado por um operador maximal monótono governado pelo p-Laplaciano degenerado em que a difusão d explode em regiões localizadas dentro do domínio.
|
3 |
"Comportamento assintótico de problemas parabólicos em domínios tipo Dumbbell" / Assimptotic Behavior for parabolic problems in Dumbbell domainsGerman Jesus Lozada Cruz 12 January 2004 (has links)
O propósito deste trabalho é estudar a dinâmica assintótica de problemas parabólicos em domínios tipo dumbbell. Para isto primeiro estudaremos a semi-continuidade superior de atratores para problemas parabólicos com condição de fronteira do tipo Neumann homogênea e depois estudaremos a existência de equilíbrios estáveis não-constantes para problemas de reação-difusão com condições de fronteira tipo Neumann não-lineares. / The aim of this work is to study the asymptotic dynamics of parabolic problems in dumbbell type domains. To that end firstly, we study upper semicontinuity of attractors for parabolic problems with homogeneous Neumann boundary conditions and afterwards we study the existence of stable nonconstant equilibria for reaction-diffusion problems with nonlinear Neumann boundary conditions.
|
4 |
Semicontinuidade inferior de atratores para problemas parabólicos em domínios finos / Lower semicontinuity of attactors for parabolic problems in thin domainsSilva, Ricardo Parreira da 30 October 2007 (has links)
Neste trabalho estudamos problemas de reação-difusão semilineares do tipo \'u IND..t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \'PERTENCE A\' \'OMEGA\' \'PARTIAL\' U/\'PARTIAL\'V (x, t) = 0, x \'PERTENCE A\' \'PARTIAL\'\' OMEGA\'. Desenvolvemos uma teoria abstrata para a obtenção da continuidade da dinâmica assintótica de (P) sob perturbações singulares do domínio espacial W e aplicamos a uma série de exemplos dos assim chamados domínios finos / In this work we study semilinear reaction-diffusion problems of the type \'u IND.t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \' PERTENCE A\' \'OMEGA\' \'PARTIAL\'u/\'ARTIAL\' v (x, t) = 0, x \"PERTENCE A\' \'PARTIAL\' \' OMEGA\' We develop a abstract theory to obtain the continuity of the asymptotic dynamics of (P) under singular perturbations of the spatial domain W and we apply that to many examples in thin domains
|
5 |
Long-time dynamics of two classes of beam and plate equations / Dinâmica a longo prazo de duas classes de equações de viga e placaMonteiro, Rodrigo Nunes 01 April 2016 (has links)
In this thesis we will discuss the well-posedness and long-time dynamics of curved beam and thermoelastic plates. First, we considered the Bresse system with nonlinear damping and forcing terms. For this model we show the Timoshenko system as a singular limit of the Bresse system as the arch curvature l goes to 0 and under suitable assumptions on the nonlinearity we prove the existence of a smooth global attractor with finite fractal dimension and exponential attractors as well. We also compare the Bresse system with the Timoshenko system, in the sense of upper-semicontinuity of their attractors as l → 0. Second, we study a full von Karman system, this model accounts for vertical and in plane displacements. For this system we add a nonlinear thermal coupling and free boundary conditions. It is shown that the system, without any mechanical dissipation imposed on vertical displacements, admits a global attractor which is also smooth and of finite fractal dimension. / Neste trabalho iremos discutir a existência, unicidade, dependência contínua e a dinâmica a longo prazo das soluções de um sistema de equações que modela a vibração de vigas curvas e um modelo de placas termoelásticas. Primeiro consideramos o modelo de Bresse com dissipação não linear e forças externas. Provamos que o sistema de Timoshenko pode ser obtido como limite do sistema de Bresse quando o arco de curvatura l tende para zero e sob algumas hipóteses, mostramos a existência de um atrator global com dimensão fractal finita. Também comparamos o sistema de Bresse com o sistema de Timoshenko no sentido da semicontinuidade de seus atratores quando o parâmetro l → 0. Na segunda parte estudamos o sistema de full Von Karmam. Neste modelo adicionamos efeitos térmicos e condições de fronteira do tipo livre. Mostramos que esse problema, sem dissipação mecânica no deslocamento vertical, também possui um atrator global regular com dimensão infinita.
|
6 |
Semicontinuidade superior de atratores para semigrupos multívocos.Simsen, Jacson 16 August 2007 (has links)
Made available in DSpace on 2016-06-02T20:27:36Z (GMT). No. of bitstreams: 1
TeseJS.pdf: 961805 bytes, checksum: ce3308955ac55792f007f7e8de10f2fc (MD5)
Previous issue date: 2007-08-16 / Financiadora de Estudos e Projetos / In this work we developed an abstract theory for existence and characterization of
attractors for multivalued semigroups defined by generalized semi
ows and we apply
the abstract results to systems of p-laplacian differential inclusions and we obtain
upper semicontinuity of the attractors as the parameter of diffusion goes to infinity. / Neste trabalho desenvolvemos uma teoria abstrata para existência e caracterização
de atratores para semigrupos multívocos definidos por semi
uxos generalizados. Posteriormente
aplicamos os resultados abstratos à sistemas de inclusões diferenciais
governados pelo p-laplaciano e obtivemos semicontinuidade superior dos atratores
quando o parâmetro de difusão tende a infinito.
|
7 |
Existência e semicontinuidade de atratores global, pullback e de trajetóriasBelluzi, Maykel Boldrin 27 July 2016 (has links)
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-10-10T17:42:51Z
No. of bitstreams: 1
DissMBB.pdf: 961528 bytes, checksum: 881a8b78aa15e0ec1fc94c8c87e7e3a3 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:59:42Z (GMT) No. of bitstreams: 1
DissMBB.pdf: 961528 bytes, checksum: 881a8b78aa15e0ec1fc94c8c87e7e3a3 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:59:47Z (GMT) No. of bitstreams: 1
DissMBB.pdf: 961528 bytes, checksum: 881a8b78aa15e0ec1fc94c8c87e7e3a3 (MD5) / Made available in DSpace on 2016-10-20T19:59:53Z (GMT). No. of bitstreams: 1
DissMBB.pdf: 961528 bytes, checksum: 881a8b78aa15e0ec1fc94c8c87e7e3a3 (MD5)
Previous issue date: 2016-07-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The mainly purpose of this paper is to study the asymptotic behaviour of abstract evolution equations.
The first part of this work is dedicated to the attraction theory for univoque autonomous and nonautonomous
problems and for multivoque autonomous problems. After that, we analyse the existence of
the appropriate type of attractor for a reaction-diffusion equation (autonomous and with uniqueness property),
a variation of the previous equation (which makes it no longer possible to ensure the uniqueness
property) and a delayed differential equation (non-autonomous). For the two lasting equations, we also
investigate the upper-semicontinuity of the families of the corresponding attractors. / O principal objetivo desta dissertação é estudar o comportamento assintótico de equações de evolução abstratas. A primeira parte do trabalho apresenta e compara, quando possível, a teoria de atração para problemas autônomos e não autônomos unívocos e problemas autônomos multívocos. Após apresentados os resultados, analisamos a existência dos atratores apropriados para uma equação de reação-difusão (autônoma e com unicidade de solucão), uma variação da equação anterior (fazendo com que o problema não tenha mais unicidade de solução) e uma equação diferencial com retardo (não autônoma). Nos dois últimos, investigamos também a semicontinuidade superior para as famílias de atratores correspondentes.
|
8 |
Long-time dynamics of two classes of beam and plate equations / Dinâmica a longo prazo de duas classes de equações de viga e placaRodrigo Nunes Monteiro 01 April 2016 (has links)
In this thesis we will discuss the well-posedness and long-time dynamics of curved beam and thermoelastic plates. First, we considered the Bresse system with nonlinear damping and forcing terms. For this model we show the Timoshenko system as a singular limit of the Bresse system as the arch curvature l goes to 0 and under suitable assumptions on the nonlinearity we prove the existence of a smooth global attractor with finite fractal dimension and exponential attractors as well. We also compare the Bresse system with the Timoshenko system, in the sense of upper-semicontinuity of their attractors as l → 0. Second, we study a full von Karman system, this model accounts for vertical and in plane displacements. For this system we add a nonlinear thermal coupling and free boundary conditions. It is shown that the system, without any mechanical dissipation imposed on vertical displacements, admits a global attractor which is also smooth and of finite fractal dimension. / Neste trabalho iremos discutir a existência, unicidade, dependência contínua e a dinâmica a longo prazo das soluções de um sistema de equações que modela a vibração de vigas curvas e um modelo de placas termoelásticas. Primeiro consideramos o modelo de Bresse com dissipação não linear e forças externas. Provamos que o sistema de Timoshenko pode ser obtido como limite do sistema de Bresse quando o arco de curvatura l tende para zero e sob algumas hipóteses, mostramos a existência de um atrator global com dimensão fractal finita. Também comparamos o sistema de Bresse com o sistema de Timoshenko no sentido da semicontinuidade de seus atratores quando o parâmetro l → 0. Na segunda parte estudamos o sistema de full Von Karmam. Neste modelo adicionamos efeitos térmicos e condições de fronteira do tipo livre. Mostramos que esse problema, sem dissipação mecânica no deslocamento vertical, também possui um atrator global regular com dimensão infinita.
|
9 |
Semicontinuidade inferior de atratores para problemas parabólicos em domínios finos / Lower semicontinuity of attactors for parabolic problems in thin domainsRicardo Parreira da Silva 30 October 2007 (has links)
Neste trabalho estudamos problemas de reação-difusão semilineares do tipo \'u IND..t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \'PERTENCE A\' \'OMEGA\' \'PARTIAL\' U/\'PARTIAL\'V (x, t) = 0, x \'PERTENCE A\' \'PARTIAL\'\' OMEGA\'. Desenvolvemos uma teoria abstrata para a obtenção da continuidade da dinâmica assintótica de (P) sob perturbações singulares do domínio espacial W e aplicamos a uma série de exemplos dos assim chamados domínios finos / In this work we study semilinear reaction-diffusion problems of the type \'u IND.t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \' PERTENCE A\' \'OMEGA\' \'PARTIAL\'u/\'ARTIAL\' v (x, t) = 0, x \"PERTENCE A\' \'PARTIAL\' \' OMEGA\' We develop a abstract theory to obtain the continuity of the asymptotic dynamics of (P) under singular perturbations of the spatial domain W and we apply that to many examples in thin domains
|
10 |
Atratores de trajetórias para algumas classes de equações diferenciais parciais / Trajectory attractors for some class of partial differential equationsRicardo de Sá Teles 01 August 2012 (has links)
Neste trabalho estudamos um problema parabólico e um problema hiperbólico que não admitem unicidade de solução. Após garantir a existência de solução para cada um desses problemas, analisamos o comportamento assintótico de suas soluções por meio da teoria do atrator de trajetórias. Nossos resultados principais demonstram, sob hipóteses apropriadas, a semicontinuidade superior das famílias de atratores de trajetórias quando o coeficiente de difusão é grande. / In this work we study a parabolic problem and a hyperbolic problem that not admit uniqueness of solution. After to ensure existence of solution for each of these problems, we analyze the asymptotic behavior of their solutions by means of the theory of trajectory attractors. Our main results demonstrate, under appropriate assumptions, the upper semicontinuity of families of trajectory attractors when the diffusion coefficient is large.
|
Page generated in 0.0649 seconds