Spelling suggestions: "subject:"semigroups."" "subject:"hemigroups.""
131 |
Ore's theoremViehweg, Jarom 01 January 2011 (has links)
The purpose of this project was to study the classical result in this direction discovered by O. Ore in 1938, as well as related theorems and corollaries. Ore's Theorem and its corollaries provide us with several results relating distributive lattices with cyclic groups.
|
132 |
Strong mixing measures and invariant sets in linear dynamicsMurillo Arcila, Marina 31 March 2015 (has links)
The Ph.D. Thesis “Strong mixing measures and invariant sets in linear dynamics”
has three differenced parts. Chapter 0 introduces the notation,
definitions and the basic results that will be needed troughout the thesis.
There is a first part consisting of Chapters 1 and 2, where we study the
relation between the Frequent Hypercyclicity Criterion and the existence of
strongly-mixing Borel probability measures. A third chapter, where we focus
our attention on frequent hypercyclicity for translation C0-semigroups,
and the last part corresponding to Chapters 4 and 5, where we study dynamical
properties satisfied by autonomous and non-autonomous linear dynamical
systems on certain invariant sets. In what follows, we give a brief
description of each chapter:
In Chapter 1, we construct strongly mixing Borel probability T-invariant
measures with full support for operators on F-spaces which satisfy the
Frequent Hypercyclicity Criterion. Moreover, we provide examples of operators
that verify this criterion and we also show that this result can be
improved in the case of chaotic unilateral backward shifts. The contents of
this chapter have been published in [88] and [12].
In Chapter 2, we show that the Frequent Hypercyclicity Criterion for C0-
semigroups, which was given by Mangino and Peris in [82], ensures the
existence of invariant strongly mixing measures with full support. We will
provide several examples, that range from birth-and-death models to the
Black-Scholes equation, which illustrate these results. All the results of this
chapter have been published in [86].
In Chapter 3, we focus our attention on one of the most important tests
C0-semigroups, the translation semigroup. Inspired in the work of Bayart
and Ruzsa in [22], where they characterize frequent hypercyclicity of
weighted backward shifts we characterize frequently hypercyclic translation
C0-semigroups on C
ρ
0
(R) and L
ρ
p(R). Moreover, we first review some
known results on the dynamics of the translation C0-semigroups. Later we
state and prove a characterization of frequent hypercyclicity for weighted
pseudo shifts in terms of the weights that will be used later to obtain a
characterization of frequent hypercyclicity for translation C0-semigroups
on C
ρ
0
(R). Finally we study the case of L
ρ
p(R). We will also establish an
analogy between the study of frequent hypercyclicity for the translation
C0-semigroup in L
ρ
p(R) and the corresponding one for backward shifts on
weighted sequence spaces. The contents of this chapter have been included
in [81].
Chapter 4 is devoted to study hypercyclicity, Devaney chaos, topological
mixing properties and strong mixing in the measure-theoretic sense for operators
on topological vector spaces with invariant sets. More precisely, we
establish links between the fact of satisfying any of our dynamical properties
on certain invariant sets, and the corresponding property on the closed
linear span of the invariant set, or on the union of the invariant sets. Viceversa,
we give conditions on the operator (or C0-semigroup) to ensure that,
when restricted to the invariant set, it satisfies certain dynamical property.
Particular attention is given to the case of positive operators and semigroups
on lattices, and the (invariant) positive cone. The contents of this
chapter have been published in [85].
In the last chapter, motivated by the work of Balibrea and Oprocha [4],
where they obtained several results about weak mixing and chaos for nonautonomous
discrete systems on compact sets, we study mixing properties for
nonautonomous linear dynamical systems that are induced by the corresponding
dynamics on certain invariant sets. All the results of this chapter
have been published in [87]. / Murillo Arcila, M. (2015). Strong mixing measures and invariant sets in linear dynamics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48519
|
133 |
Endomorphisms of Fraïssé limits and automorphism groups of algebraically closed relational structuresMcPhee, Jillian Dawn January 2012 (has links)
Let Ω be the Fraïssé limit of a class of relational structures. We seek to answer the following semigroup theoretic question about Ω. What are the group H-classes, i.e. the maximal subgroups, of End(Ω)? Fraïssé limits for which we answer this question include the random graph R, the random directed graph D, the random tournament T, the random bipartite graph B, Henson's graphs G[subscript n] (for n greater or equal to 3) and the total order Q. The maximal subgroups of End(Ω) are closely connected to the automorphism groups of the relational structures induced by the images of idempotents from End(Ω). It has been shown that the relational structure induced by the image of an idempotent from End(Ω) is algebraically closed. Accordingly, we investigate which groups can be realised as the automorphism group of an algebraically closed relational structure in order to determine the maximal subgroups of End(Ω) in each case. In particular, we show that if Γ is a countable graph and Ω = R,D,B, then there exist 2[superscript aleph-naught] maximal subgroups of End(Ω) which are isomorphic to Aut(Γ). Additionally, we provide a complete description of the subsets of Q which are the image of an idempotent from End(Q). We call these subsets retracts of Q and show that if Ω is a total order and f is an embedding of Ω into Q such that im f is a retract of Q, then there exist 2[superscript aleph-naught] maximal subgroups of End(Q) isomorphic to Aut(Ω). We also show that any countable maximal subgroup of End(Q) must be isomorphic to Zⁿ for some natural number n. As a consequence of the methods developed, we are also able to show that when Ω = R,D,B,Q there exist 2[superscript aleph-naught] regular D-classes of End(Ω) and when Ω = R,D,B there exist 2[superscript aleph-naught] J-classes of End(Ω). Additionally we show that if Ω = R,D then all regular D-classes contain 2[superscript aleph-naught] group H-classes. On the other hand, we show that when Ω = B,Q there exist regular D-classes which contain countably many group H-classes.
|
134 |
Stochastické evoluční systémy a jejich aplikace / Stochastic Evolution Systems and Their ApplicationsRubín, Tomáš January 2016 (has links)
In the Thesis, linear stochastic differential equations in a Hilbert space driven by a cylindrical fractional Brownian motion with the Hurst parameter in the interval H < 1/2 are considered. Under the conditions on the range of the diffusion coefficient, existence of the mild solution is proved together with measurability and continuity. Existence of a limiting distribution is shown for exponentially stable semigroups. The theory is modified for the case of analytical semigroups. In this case, the conditions for the diffusion coefficient are weakened. The scope of the theory is illustrated on the Heath-Jarrow-Morton model, the wave equation, and the heat equation. 1
|
135 |
Mixed Norm Estimates in Dunkl Setting and Chaotic Behaviour of Heat SemigroupsBoggarapu, Pradeep January 2014 (has links) (PDF)
This thesis is divided into three parts. In the first part we study mixed norm estimates for Riesz transforms associated with various differential operators. First we prove the mixed norm estimates for the Riesz transforms associated with Dunkl harmonic oscillator by means of vector valued inequalities for sequences of operators defined in terms of Laguerre function expansions. In certain cases, the result can be deduced from the corresponding result for Hermite Riesz transforms, for which we give a simple and an independent proof. The mixed norm estimates for Riesz transforms associated with other operators, namely the sub-Laplacian on Heisenberg group, special Hermite operator on C^d and Laplace-Beltrami operator on the group SU(2) are obtained using their L^pestimates and by making use of a lemma of Herz and Riviere along with an idea of Rubio de Francia. Applying these results to functions expanded in terms of spherical harmonics, we deduce certain vector valued inequalities for sequences of operators defined in terms of radial parts of the corresponding operators.
In the second part, we study the chaotic behavior of the heat semigroup generated by the Dunkl-Laplacian ∆_κ on weighted L^P-spaces. In the general case, for the chaotic behavior of the Dunkl-heat semigroup on weighted L^p-spaces, we only have partial results, but in the case of the heat semigroup generated by the standard Laplacian, a complete picture of the chaotic behavior is obtained on the spaces L^p ( R^d,〖 (φ_iρ (x ))〗^2 dx) where φ_iρ the Euclidean spherical function is. The behavior is very similar to the case of the Laplace-Beltrami operator on non-compact Riemannian symmetric spaces studied by Pramanik and Sarkar.
In the last part, we study mixed norm estimates for the Cesáro means associated with Dunkl-Hermite expansions on〖 R〗^d. These expansions arise when one considers the Dunkl-Hermite operator (or Dunkl harmonic oscillator)〖 H〗_κ:=-Δ_κ+|x|^2. It is shown that the desired mixed norm estimates are equivalent to vector-valued inequalities for a sequence of Cesáro means for Laguerre expansions with shifted parameter. In order to obtain the latter, we develop an argument to extend these operators for complex values of the parameters involved and apply a version of Three Lines Lemma.
|
136 |
Opérateurs et semi-groupes d’opérateurs sur des espaces de fonctions holomorphes : Applications à la théorie de l’universalité / Operators and operator semigroups on spaces of holomorphic functions : applications to the theory of universalityCélariès, Benjamin 21 June 2019 (has links)
Les travaux de cette thèse relèvent du domaine de la théorie des opérateurs, et se situent à l'interface de l'analyse complexe, de la théorie des semi-groupes et de la théorie de l'universalité. Le premier résultat principal de cette thèse relève de l'étude des opérateurs de composition sur des espaces de fonctions holomorphes : nous déterminons le spectre d'un opérateur de composition par un symbole de Koenigs sur l'espace des fonctions holomorphes sur le disque unité, et en déduisons des informations sur la forme générale du spectre des opérateurs de composition par un symbole de Koenigs sur des espaces de Banach de fonctions holomorphes. L'outil principal que nous développons pour notre étude est une description des projections spectrales associées à ces opérateurs. Le second résultat principal de cette thèse relève de la théorie de l'universalité : nous étendons aux semi-groupes d'opérateurs la notion d'opérateur universel, et établissons l'existence d'un semi-groupe universel pour les semi-groupes quasi-contractifs en exhibant un semi-groupe sur un espace de fonctions holomorphes. Nous élargissons ensuite ce résultats aux semi-groupes d'opérateurs concaves / The works in this thesis address topics from operator theory and involves ideas and notions arising from complex analysis, the theory of operator semigroups and the theory of universality. The first main result of this thesis relates to the study of composition operators on spaces of holomorphic functions: we compute the spectrum of an operator of composition by a Koenigs's symbol acting on the space of holomorphic functions on the open unit disk, and derive from it the general description of the spectrum of composition operators on Banach spaces of holomorphic functions. The key tool we develop in this study is a description of spectral projections associated with such operators.The second main result of this thesis relates to the thoery of universality: we extend to operator semigroups the notion of universality. Then, we prove the existence of a universal semigroup for quasi-contractive operators semigroups. We then show a similar result for concave semigroups
|
137 |
Konstrukcija Kolomboovih rešenja determinističkih i stohastičkih diferencijalnih jednačina / Construction of Colombeau solutions to eterministic and stochastic differential equationsRajter Danijela 14 February 2002 (has links)
<p>Doktorska disertacija je posvećena rešavanju nelinearnih diferen­ cijalnih jednačina, kao i linearnih diferencijalnih jednačina sa singularite-tim a u okviru prostora Kolomboovih uopštenih funkcija. U osnovi, dis­ertacija se može podeliti na dva dela. Prvi deo disertacije je posvećen rešavanju determinističkih parcijalnih diferencijalnih jednačina primenom teorije polugrupa operatora definisanih na prostorima Kolomboa. Drugi deo disertacije posvećen je rešavanju stohastičkih običnih i parcijalnih dife­rencijalnih jednačina. Ove jednačine sadrže Kolomboove uopštene slučajne procese kao nelinearni deo, ili kao početne uslove.</p> / <p>Doctoral thesis is devoted to nonlinear differential equations, as well as linear differential equations with singularities in the framework of Colombeau generalized function spaces. Basically, the thesis can be devided into two parts. The first part is devoted to solving deterministic partial differential equations applaying semigroup theory where those semigroups are defined on Colombeau spaces. The second part of the thesis is devoted to stochastic ordinary and partial differential equations. Those equations contain Colombeau generalized stochastic processes as nonlinear part, or as initial data.</p>
|
138 |
Latent relationships between Markov processes, semigroups and partial differential equationsKajama, Safari Mukeru 30 June 2008 (has links)
This research investigates existing relationships between the three apparently unrelated
subjects: Markov process, Semigroups and Partial difierential equations.
Markov processes define semigroups through their transition functions. Conversely
particular semigroups determine transition functions and can be regarded as Markov
processes. We have exploited these relationships to study some Markov chains.
The infnitesimal generator of a Feller semigroup on the closure of a bounded domain
of Rn; (n ^ 2), is an integro-diferential operator in the interior of the domain and verifes
a boundary condition.
The existence of a Feller semigroup defined by a diferential operator and a boundary
condition is due to the existence of solution of a bounded value problem. From this result
other existence suficient conditions on the existence of Feller semigroups have been
obtained and we have applied some of them to construct Feller semigroups on the unity
disk of R2. / Decision Sciences / M. Sc. (Operations Research)
|
139 |
Pusgrupių aproksimacijų tikslumo tyrimai / Investigations of the accuracy of approximations of semigroupsVilkienė, Monika 02 May 2011 (has links)
Disertacijoje tiriamas operatorių pusgrupių Eulerio ir Josidos approximacijų konvergavimas. Gauti Eulerio aproksimacijų asimptotiniai skleidiniai ir optimalūs liekamųjų narių įverčiai. Taip pat pateiktos įvairios šių skleidinių koeficientų analizinės išraiškos. Josidos aproksimacijoms buvo rasti du optimalūs konvergavimo greičio įverčiai su optimaliomis konstantomis. Taip pat gauti Josidos aproksimacijų asimptotiniai skleidiniai ir liekamųjų narių įverčiai. / In this thesis we investigate the convergence of Euler's and Yosida approximations of operator semigroups. We obtain asymptotic expansions for Euler's approximations of semigroups with optimal bounds for the remainder terms. We provide various explicit formulas for the coefficients for these expansions. For Yosida approximations of semigroups we obtain two optimal error bounds with optimal constants. We also construct asymptotic expansions for Yosida approximations of semigroups and provide optimal bounds for the remainder terms of these expansions.
|
140 |
Investigations of the accuracy of approximations of semigroups / Pusgrupių aproksimacijų tikslumo tyrimaiVilkienė, Monika 02 May 2011 (has links)
In this thesis we investigate the convergence of Euler's and Yosida approximations of operator semigroups. We obtain asymptotic expansions for Euler's approximations of semigroups with optimal bounds for the remainder terms. We provide various explicit formulas for the coefficients for these expansions. For Yosida approximations of semigroups we obtain two optimal error bounds with optimal constants. We also construct asymptotic expansions for Yosida approximations of semigroups and provide optimal bounds for the remainder terms of these expansions. / Disertacijoje tiriamas operatorių pusgrupių Eulerio ir Josidos approximacijų konvergavimas. Gauti Eulerio aproksimacijų asimptotiniai skleidiniai ir optimalūs liekamųjų narių įverčiai. Taip pat pateiktos įvairios šių skleidinių koeficientų analizinės išraiškos. Josidos aproksimacijoms buvo rasti du optimalūs konvergavimo greičio įverčiai su optimaliomis konstantomis. Taip pat gauti Josidos aproksimacijų asimptotiniai skleidiniai ir liekamųjų narių įverčiai.
|
Page generated in 0.0423 seconds