• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 88
  • 46
  • 37
  • 27
  • 13
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 592
  • 592
  • 470
  • 104
  • 87
  • 82
  • 81
  • 81
  • 79
  • 64
  • 63
  • 61
  • 55
  • 49
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

An Energy-Efficient Distributed Algorithm for k-Coverage Problem in Wireless Sensor Networks

Vu, Chinh Trung 03 May 2007 (has links)
Wireless sensor networks (WSNs) have recently achieved a great deal of attention due to its numerous attractive applications in many different fields. Sensors and WSNs possesses a number of special characteristics that make them very promising in many applications, but also put on them lots of constraints that make issues in sensor network particularly difficult. These issues may include topology control, routing, coverage, security, and data management. In this thesis, we focus our attention on the coverage problem. Firstly, we define the Sensor Energy-efficient Scheduling for k-coverage (SESK) problem. We then solve it by proposing a novel, completely localized and distributed scheduling approach, naming Distributed Energy-efficient Scheduling for k-coverage (DESK) such that the energy consumption among all the sensors is balanced, and the network lifetime is maximized while still satisfying the k-coverage requirement. Finally, in related work section we conduct an extensive survey of the existing work in literature that focuses on with the coverage problem.
312

SenMinCom: Pervasive Distributed Dynamic Sensor Data Mining for Effective Commerce

Hiremath, Naveen 18 July 2008 (has links)
In last few years, the use of wireless sensor networks and cell phones has become ubiquitous; fusing these technologies in the field of business will open up new possibilities. To fill this lacuna, I propose a novel idea where the combination of these will facilitate companies to receive feedback on their products and services. System's unobtrusive sensors will not only collect shopping, mobile usage data from consumers but will also make effective use of this information to increase revenue, cut costs, etc.; the use of mobile agent based data mining allows analyzing the data from different dimensions, categorizing it on factors such as product positioning, promotion of goods, etc. as in the case of a shopping store. Additionally, because of the dynamic mining system the companies get on-the-scene recommendation of products rather than off-the-scene. In this thesis, a novel distributed pervasive mining system is proposed to get dynamic shopping information and mobile device usage of the customers.
313

Semidefinite Facial Reduction for Low-Rank Euclidean Distance Matrix Completion

Krislock, Nathan January 2010 (has links)
The main result of this thesis is the development of a theory of semidefinite facial reduction for the Euclidean distance matrix completion problem. Our key result shows a close connection between cliques in the graph of the partial Euclidean distance matrix and faces of the semidefinite cone containing the feasible set of the semidefinite relaxation. We show how using semidefinite facial reduction allows us to dramatically reduce the number of variables and constraints required to represent the semidefinite feasible set. We have used this theory to develop a highly efficient algorithm capable of solving many very large Euclidean distance matrix completion problems exactly, without the need for a semidefinite optimization solver. For problems with a low level of noise, our SNLSDPclique algorithm outperforms existing algorithms in terms of both CPU time and accuracy. Using only a laptop, problems of size up to 40,000 nodes can be solved in under a minute and problems with 100,000 nodes require only a few minutes to solve.
314

Semidefinite Facial Reduction for Low-Rank Euclidean Distance Matrix Completion

Krislock, Nathan January 2010 (has links)
The main result of this thesis is the development of a theory of semidefinite facial reduction for the Euclidean distance matrix completion problem. Our key result shows a close connection between cliques in the graph of the partial Euclidean distance matrix and faces of the semidefinite cone containing the feasible set of the semidefinite relaxation. We show how using semidefinite facial reduction allows us to dramatically reduce the number of variables and constraints required to represent the semidefinite feasible set. We have used this theory to develop a highly efficient algorithm capable of solving many very large Euclidean distance matrix completion problems exactly, without the need for a semidefinite optimization solver. For problems with a low level of noise, our SNLSDPclique algorithm outperforms existing algorithms in terms of both CPU time and accuracy. Using only a laptop, problems of size up to 40,000 nodes can be solved in under a minute and problems with 100,000 nodes require only a few minutes to solve.
315

Characterizing Middleware Mechanisms for Future Sensor Networks

Wolenetz, Matthew David 20 July 2005 (has links)
Due to their promise for supporting applications society cares about and their unique blend of distributed systems and networking issues, wireless sensor networks (SN) have become an active research area. Most current SN use an arrangement of nodes with limited capabilities. Given SN device technology trends, we believe future SN nodes will have the computational capability of today's handhelds, and communication capabilities well beyond today's 'motes'. Applications will demand these increased capabilities in SN for performing computations in-network on higher bit-rate streaming data. We focus on interesting fusion applications such as automated surveillance. These applications combine one or more input streams via synthesis, or fusion, operations in a hierarchical fashion to produce high-level inference output streams. For SN to successfully support fusion applications, they will need to be constructed to achieve application throughput and latency requirements while minimizing energy usage to increase application lifetime. This thesis investigates novel middleware mechanisms for improving application lifetime while achieving required latency and throughput, in the context of a variety of SN topologies and scales, models of potential fusion applications, and device radio and CPU capabilities. We present a novel architecture, DFuse, for supporting data fusion applications in SN. Using a DFuse implementation and a novel simulator, MSSN, of the DFuse middleware, we investigate several middleware mechanisms for managing energy in SN. We demonstrate reasonable overhead for our prototype DFuse implementation on a small iPAQ SN. We propose and evaluate extensively an elegant distributed, local role-assignment heuristic that dynamically adapts the mapping of a fusion application to the SN, guided by a cost function. Using several studies with DFuse and MSSN, we show that this heuristic scales well and enables significant lifetime extension. We propose and evaluate with MSSN a predictive CPU scaling mechanism for dynamically optimizing energy usage by processors performing fusion. The scaling heuristic seeks to make the ratio of processing time to communication time for each synthesis operation conform to an input parameter. We show how tuning this parameter trades latency degradation for improved lifetime. These investigations demonstrate MSSN's utility for exposing tradeoffs fundamental to successful SN construction.
316

Security Schemes for Wireless Sensor Networks with Mobile Sink

Rasheed, Amar Adnan 2010 May 1900 (has links)
Mobile sinks are vital in many wireless sensor applications for efficient data collection, data querying, and localized sensor reprogramming. Mobile sinks prolong the lifetime of a sensor network. However, when sensor networks with mobile sinks are deployed in a hostile environment, security became a critical issue. They become exposed to varieties of malicious attacks. Thus, anti threats schemes and security services, such as mobile sink?s authentication and pairwise key establishment, are essential components for the secure operation of such networks. Due to the sensors, limited resources designing efficient security schemes with low communication overhead to secure communication links between sensors and MS (Mobile Sink) is not a trivial task. In addition to the sensors limited resources, sink mobility required frequent exchange of cryptography information between the sensors and MS each time the MS updates its location which imposes extra communication overhead on the sensors. In this dissertation, we consider a number of security schemes for WSN (wireless sensor network) with MS. The schemes offer high network?s resiliency and low communication overhead against nodes capture, MS replication and wormhole attacks. We propose two schemes based on the polynomial pool scheme for tolerating nodes capture: the probabilistic generation key pre-distribution scheme combined with polynomial pool scheme, and the Q-composite generation key scheme combined with polynomial pool scheme. The schemes ensure low communication overhead and high resiliency. For anti MS replication attack scheme, we propose the multiple polynomial pools scheme that provide much higher resiliency to MS replication attack as compared to the single polynomial pool approach. Furthermore, to improve the network resiliency against wormhole attack, two defensive mechanisms were developed according to the MS mobility type. In the first technique, MS uses controlled mobility. We investigate the problem of using a single authentication code by sensors network to verify the source of MS beacons, and then we develop a defensive approach that divide the sensor network into different authentication code?s grids. In the second technique, random mobility is used by MS. We explore the use of different communication channels available in the sensor hardware combined with polynomial pool scheme.
317

A Study On Certain Theoretical And Practical Problems In Wireless Networks

Antepli, Mehmet Akif 01 October 2010 (has links) (PDF)
The aim of the thesis is to investigate the design of efficient wireless networks through practical as well as theoretical considerations. We constructed a wireless sensor network (WSN) testbed with battery operated nodes capable of RF communication. The system is a centralized tree-based WSN to study challenges of target modeling, detection, and localization. The testbed employed magnetic sensors, on which relatively few results have been reported in the literature. A ferrous test target is modeled as magnetic dipole by validating experimentally. The problem of sensor sensitivity variation is addressed by including sensitivity estimates in model validation. After reliably detecting the target, maximum-likelihood and least-squares techniques are applied for localization. Practical considerations of constructing a WSN utilizing magnetic sensors addressed. Maximum-lifetime operation of these networks requires joint consideration of sensing and communication. Energy harvesting is promising to overcome this major challenge for energy-constrained systems. In the second part of the thesis, we considered the minimization of transmission completion time for a given number of bits per user in an energy harvesting multiuser communication system, where the energy harvesting instants are known beforehand. The two-user case with achievable rate region having structural properties satisfied by the AWGN Broadcast Channel is studied. It is shown that the optimal scheduler ends transmission to both users at the same time while deferring a nonnegative amount of energy from each energy harvest for later use. The problem is formulated as an optimization problem and solved by exploiting its special structure.
318

Modelling, analysis and experimentation of a simple feedback scheme for error correction control

Flärdh, Oscar January 2007 (has links)
<p>Data networks are an important part in an increasing number of applications with real-time and reliability requirements. To meet these demands a variety of approaches have been proposed. Forward error correction, which adds redundancy to the communicated data, is one of them. However, the redundancy occupies communication bandwidth, so it is desirable to control the amount of redundancy in order to achieve high reliability without adding excessive communication delay. The main contribution of the thesis is to formulate the problem of adjusting the redundancy in a control framework, which enables the dynamic properties of error correction control to be analyzed using control theory. The trade-off between application quality and resource usage is captured by introducing an optimal control problem. Its dependence on the knowledge of the network state at the transmission side is discussed. An error correction controller that optimizes the amount of redundancy without relying on network state information is presented. This is achieved by utilizing an extremum seeking control algorithm to optimize the cost function. Models with varying complexity of the resulting feedback system are presented and analyzed. Conditions for convergence are given. Multiple-input describing function analysis is used to examine periodic solutions. The results are illustrated through computer simulations and experiments on a wireless sensor network.</p>
319

Ultra-Low Power Electronics for Autonomous Micro-Sensor Applications

Davidova, Rebeka 01 January 2011 (has links)
This thesis presented the research, design and fabrication associated with a unique application of rectenna technology combined with lock-in amplification. An extremely low-power harmonic transponder is conjoined with an interrogator base-station, and utilizing coherent demodulation the Remote Lock-In Amplifier (RLIA) concept is realized. Utilizing harmonic re-radiation with very low-power input, the 1st generation transponder detects a transmitted interrogation signal and responds by retransmitting the second harmonic of the signal. The 1st generation transponder performs this task while using no additional power besides that which accompanies the wireless signal. Demonstration of the first complete configuration provided proof of concept for the RLIA and feasibility of processing relevant information under "zero" power operating conditions with a remote transponder. Design and fabrication of a new transponder where the existing zero-bias transponder was modified to include a DC bias to the diode-based frequency doubler is presented. Applied bias voltage directly changed the impedance match between the receiving 1.3 GHz antenna and the diode causing a change in conversion loss. Testing demonstrated that a change in conversion loss induces an amplitude modulation on the retransmission of the signal from the transponder. A test of bias sweep at the optimal operating frequency was performed on the 2nd generation transponder and it was seen that a change of ~ 0.1 V in either a positive or negative bias configuration induced an approximate 15 dB change in transponder output power. A diode-integrated radar detector is designed to sense microwaves occurring at a certain frequency within its local environment and transform the microwave energy to a DC voltage proportional the strength of the signal impinging on its receiving antenna. The output of the radar detector could then be redirected to the bias input of the 2nd generation transponder, where this DC voltage input would cause a change in conversion loss and modulate the retransmitted interrogation signal from the transponder to the base station. When the base station receives the modulated interrogation signal the information sensed by the radar detector is extracted. Simulations and testing results of the fabricated radar detector demonstrate capability of sensing a signal of approximately -53.3 dBm, and accordingly producing a rectified DC voltage output of 0.05 mV. A comparison is made between these findings and the transponder measurements to demonstrate feasibility of pairing the radar detector and the 2nd generation transponder together at the remote sensor node to perform modulation of interrogation signals.
320

Ανάπτυξη μηχανισμών ΙΕΕΕ 802.15.4 σε πλατφόρμα περιορισμένων πόρων με επεξεργαστή MSP430 / Implementation of IEEE 802.15.4 mechanisms an a limited resources platform with MSP 430 microcontroller

Κατσαρός, Κωνσταντίνος 01 September 2009 (has links)
Στη διπλωματική αυτή μελετήσαμε και υλοποιήσαμε μηχανισμούς ασφαλείας στο επίπεδο προσπέλασης μέσου (MAC) σε ένα ασύρματο δίκτυο αισθητήρων που βασίζονται στο πρότυπο ΙΕΕΕ 802.15.4. Συγκεκριμένα, ξεκινώντας από την υλοποίηση του επιπέδου MAC που υπάρχει στο TinyOS για την πλατφόρμα TelosB, αλλάξαμε το μηχανησμό backoff του CSMA-CA αλγορίθμου ώστε να γίνει συμβατός με το πρότυπο 802.15.4. Επίσης αναπτύξαμε της κατάλλήλες μεθόδους ώστε να ενσωματώσουμε στην υλοποίηση μηχανισμους ασφαλείας. Για το δεύτερο, αναπτύξαμε τον οδηγό (driver) για το ολοκληρωμένο CC2420 radio και κάναμε τις απαραίτητες πειραματικές μετρήσεις συγκρίνοντας το σύστημα σε τρείς λειτουργίες, δηλαδη χωρίς ασφάλεια, με ασφάλεια υλοποιημένη με λογισμικό (SW security) και με ασφάλεια χρησιμοποιώντας το ολοκληρωμενο CC2420 (HW security). Τέλος, μελετήθηκαν οι κύριοι μηχανισμοί διαχείρισης και διανομης των κλειδιών σε ένα δίκτυο και υλοποιήθηκαν δύο από αυτά τα μοντέλα. Το πρώτο βασίζεται στην πιθανολογική πρό-διανομη των κλειδιών ενώ το δεύτερο χρησιμοποιεί μηχανισμους ασυμμετρης κρυπτογραφίας, συγκεκριμένα ECC (elliptic curve cryptography) για να εγκαταστησει συμμετρικά κλειδιά στους κόμβους του δικτύου. / The thesis dealt with the implementation of the main medium access and security mechanisms in a wireless sensor network based on the IEEE 802.15.4 standard. More specifically, starting from the tinyos2.1 medium access implementation on the TelosB platform, the backoff mechanism was altered, in order to become fully 802.15.4 compliant, while the appropriate mechanisms were also developed in order to introduce the protocol's security features in the stack. For the latter, a driver for the CC2420 chip was developed and energy and performance meassurements were conducted, comparing the system under three modes of operation, namely with no security, with SW encryption/authentication and with HW encryption/authentication. Finally, the main mechanisms of key management and distribution in a deployed wireless sensor network were studied and developed. Specifically, we implemented two key management schemes. The first was a probalistic pre-distribution mechanism and the second an ECC (elliptic curve cryptography) mechanism of public cryptography in order to install symmetric keys on the motes.

Page generated in 0.0447 seconds