Spelling suggestions: "subject:"sensorfusion"" "subject:"sensorfusions""
261 |
Navega??o cooperativa de um rob? human?ide e um rob? com rodas usando informa??o visualSantiago, Gutemberg Santos 30 May 2008 (has links)
Made available in DSpace on 2014-12-17T14:55:06Z (GMT). No. of bitstreams: 1
GutembergSS.pdf: 569123 bytes, checksum: 6f85b5ee47010d2d331986f17689304b (MD5)
Previous issue date: 2008-05-30 / This work presents a cooperative navigation systemof a humanoid robot and a wheeled robot using visual information, aiming to navigate the non-instrumented humanoid robot
using information obtained from the instrumented wheeled robot. Despite the humanoid not having sensors to its navigation, it can be remotely controlled by infra-red signals.
Thus, the wheeled robot can control the humanoid positioning itself behind him and, through visual information, find it and navigate it. The location of the wheeled robot is obtained merging information from odometers and from landmarks detection, using the Extended Kalman Filter. The marks are visually detected, and their features are extracted by image processing. Parameters obtained by image processing are directly used in the Extended Kalman Filter. Thus, while the wheeled robot locates and navigates the humanoid, it also simultaneously calculates its own location and maps the environment (SLAM). The navigation is done through heuristic algorithms based on errors between the actual and desired pose for each robot. The main contribution of this work was the implementation of a cooperative navigation system for two robots based on visual information, which can be extended to other robotic applications, as the ability to control
robots without interfering on its hardware, or attaching communication devices / Este trabalho apresenta um sistema de navega??o cooperativa de um rob? human?ide e um rob? com rodas usando informa??o visual, com o objetivo de efetuar a navega??o do rob? human?ide n?o instrumentado utilizando-se das informa??es obtidas do rob? com rodas instrumentado. Apesar do human?ide n?o possuir sensores para sua navega??o, pode ser remotamente controlado por sinal infravermelho. Assim, o rob? com rodas pode controlar o human?ide posicionando-se atr?s dele e, atrav?s de informa??o visual, localiz?-lo e naveg?-lo. A localiza??o do rob? com rodas ? obtida fundindo-se informa??es de odometria e detec??o de marcos utilizando o filtro de Kalman estendido. Os marcos s?o detectados visualmente, e suas caracter?sticas s?o extra?das pelo o processamento da imagem. As informa??es das caracter?sticas da imagem s?o utilizadas diretamente no filtro de Kalman estendido. Assim, enquanto o rob? com rodas localiza e navega o human?ide,
realiza tamb?m sua localiza??o e o mapeamento do ambiente simultaneamente (SLAM). A navega??o ? realizada atrav?s de algoritmos heur?sticos baseados nos erros de pose entre a pose dos rob?s e a pose desejada para cada rob?. A principal contribui??o desse trabalho foi a implementa??o de um sistema de navega??o cooperativa entre dois rob?s baseados em informa??o visual, que pode ser estendido para outras aplica??es rob?ticas, dado a possibilidade de se controlar rob?s sem interferir em seu hardware, ou acoplar dispositivos de comunica??o
|
262 |
Estratégias de controle para isolação ativa de vibrações em barras de pulverizadores agrícolas / Control strategies for active vibration isolation for booms of agricultural sprayersCristiano Okada Pontelli 14 December 2012 (has links)
A utilização de sistemas de controle para estabilidade de conjuntos de barras para pulverizadores agrícolas é uma tendência devida principalmente aos problemas ambientais e de custo. Neste trabalho, o comportamento dinâmico de um pulverizador de arrasto é analisado através de um modelo não linear, obtido através de técnicas de modelagem de sistemas multicorpos utilizando-se o programa ADAMS. Foram utilizadas duas estratégias de controle PID e \"fuzzy\" a partir de medidas obtidas com fusão de sensores. A estratégia de controle clássica PID foi desenvolvida e implementada no modelo não linear no ADAMS através de ferramentas internas existentes no programa. Já a estratégia \"fuzzy\" foi desenvolvida e implementada no modelo não linear no ADAMS através da técnica de co-simulação ADAMS/Matlab. O comportamento dos sistemas de controle foi investigado através de simulação computacional. Foram testados alguns tipos de entradas (entrada degrau, entrada harmônica, entrada randômica e entrada randômica com descontinuidades bruscas). Em todas as simulações os resultados obtidos com os sistemas de controles ativos mostraram melhor estabilidade do conjunto de barras. Entre as leis de controle implementadas (PID e \"fuzzy\") não houve grandes diferenças entre as oscilações da barra exceto na entrada do tipo randômica com descontinuidades bruscas. Neste caso a lei de controle \"fuzzy\" apresentou uma grande melhoria com boa atenuação das oscilações do conjunto de barras quando comparadas com a aplicação do sistema de controle PID. / The use of active control systems for stability of booms in agricultural sprayers trend is mainly due to the environmental and costs question. In this work, the dynamic behavior of a trailed sprayer is analyzed using a nonlinear model, obtained through techniques of modeling multibody systems using the ADAMS. It is used two active control strategies, PID classical control and fuzzy, with measured data from sensor fusion. The classical PID control strategy was developed and implemented in a nonlinear model on ADAMS software using existing tools built into the program. Fuzzy was another strategy developed and implemented in the nonlinear model on ADAMS software using a technique of co-simulation ADAMS/Matlab. The behavior of control systems was investigated through computer simulation. It was tested some types of inputs (step input, harmonic input, random input and random input with abrupt discontinuities). All simulations data obtained from the applications of active systems showed better stability for boom assembly. Among the implemented two active control laws (PID and \"fuzzy\") there were no significant differences between the oscillations attenuation of the boom, except with the random input with abrupt discontinuities. wherein this case the application of the active control \"fuzzy\" strategy developed better stability on boom than the application of PID control.
|
263 |
Fusão de informações obtidas a partir de múltiplas imagens visando à navegação autônoma de veículos inteligentes em abiente agrícola / Data fusion obtained from multiple images aiming the navigation of autonomous intelligent vehicles in agricultural environmentVítor Manha Utino 08 April 2015 (has links)
Este trabalho apresenta um sistema de auxilio à navegação autônoma para veículos terrestres com foco em ambientes estruturados em um cenário agrícola. É gerada a estimativa das posições dos obstáculos baseado na fusão das detecções provenientes do processamento dos dados de duas câmeras, uma estéreo e outra térmica. Foram desenvolvidos três módulos de detecção de obstáculos. O primeiro módulo utiliza imagens monoculares da câmera estéreo para detectar novidades no ambiente através da comparação do estado atual com o estado anterior. O segundo módulo utiliza a técnica Stixel para delimitar os obstáculos acima do plano do chão. Por fim, o terceiro módulo utiliza as imagens térmicas para encontrar assinaturas que evidenciem a presença de obstáculo. Os módulos de detecção são fundidos utilizando a Teoria de Dempster-Shafer que fornece a estimativa da presença de obstáculos no ambiente. Os experimentos foram executados em ambiente agrícola real. Foi executada a validação do sistema em cenários bem iluminados, com terreno irregular e com obstáculos diversos. O sistema apresentou um desempenho satisfatório tendo em vista a utilização de uma abordagem baseada em apenas três módulos de detecção com metodologias que não tem por objetivo priorizar a confirmação de obstáculos, mas sim a busca de novos obstáculos. Nesta dissertação são apresentados os principais componentes de um sistema de detecção de obstáculos e as etapas necessárias para a sua concepção, assim como resultados de experimentos com o uso de um veículo real. / This work presents a support system to the autonomous navigation for ground vehicles with focus on structured environments in an agricultural scenario. The estimated obstacle positions are generated based on the fusion of the detections from the processing of data from two cameras, one stereo and other thermal. Three modules obstacle detection have been developed. The first module uses monocular images of the stereo camera to detect novelties in the environment by comparing the current state with the previous state. The second module uses Stixel technique to delimit the obstacles above the ground plane. Finally, the third module uses thermal images to find signatures that reveal the presence of obstacle. The detection modules are fused using the Dempster-Shafer theory that provides an estimate of the presence of obstacles in the environment. The experiments were executed in real agricultural environment. System validation was performed in well-lit scenarios, with uneven terrain and different obstacles. The system showed satisfactory performance considering the use of an approach based on only three detection modules with methods that do not prioritize obstacle confirmation, but the search for new ones. This dissertation presents the main components of an obstacle detection system and the necessary steps for its design as well as results of experiments with the use of a real vehicle.
|
264 |
Cartographie dense basée sur une représentation compacte RGB-D dédiée à la navigation autonome / A compact RGB-D map representation dedicated to autonomous navigationGokhool, Tawsif Ahmad Hussein 05 June 2015 (has links)
Dans ce travail, nous proposons une représentation efficace de l’environnement adaptée à la problématique de la navigation autonome. Cette représentation topométrique est constituée d’un graphe de sphères de vision augmentées d’informations de profondeur. Localement la sphère de vision augmentée constitue une représentation égocentrée complète de l’environnement proche. Le graphe de sphères permet de couvrir un environnement de grande taille et d’en assurer la représentation. Les "poses" à 6 degrés de liberté calculées entre sphères sont facilement exploitables par des tâches de navigation en temps réel. Dans cette thèse, les problématiques suivantes ont été considérées : Comment intégrer des informations géométriques et photométriques dans une approche d’odométrie visuelle robuste ; comment déterminer le nombre et le placement des sphères augmentées pour représenter un environnement de façon complète ; comment modéliser les incertitudes pour fusionner les observations dans le but d’augmenter la précision de la représentation ; comment utiliser des cartes de saillances pour augmenter la précision et la stabilité du processus d’odométrie visuelle. / Our aim is concentrated around building ego-centric topometric maps represented as a graph of keyframe nodes which can be efficiently used by autonomous agents. The keyframe nodes which combines a spherical image and a depth map (augmented visual sphere) synthesises information collected in a local area of space by an embedded acquisition system. The representation of the global environment consists of a collection of augmented visual spheres that provide the necessary coverage of an operational area. A "pose" graph that links these spheres together in six degrees of freedom, also defines the domain potentially exploitable for navigation tasks in real time. As part of this research, an approach to map-based representation has been proposed by considering the following issues : how to robustly apply visual odometry by making the most of both photometric and ; geometric information available from our augmented spherical database ; how to determine the quantity and optimal placement of these augmented spheres to cover an environment completely ; how tomodel sensor uncertainties and update the dense infomation of the augmented spheres ; how to compactly represent the information contained in the augmented sphere to ensure robustness, accuracy and stability along an explored trajectory by making use of saliency maps.
|
265 |
Určení pozice mobilního zařízení v prostoru / Localization of Mobile Device in SpaceKomár, Michal January 2013 (has links)
This thesis focuses on the current localization options of the Android mobile phone platform. It explores the possibilities of locating mobile devices not only with the use of inertial sensors, but also the possibility of localization using integrated video camera. The work describes the measurements done with available inertial sensors, introduces visual localization algorithm and design a system using these two approaches.
|
266 |
Intégration de méthodes de représentation et de classification pour la détection et la reconnaissance d'obstacles dans des scènes routières / Integrating representation and classification methods for obstacle detection in road scenesBesbes, Bassem 16 September 2011 (has links)
Cette thèse s'inscrit dans le contexte de la vision embarquée pour la détection et la reconnaissance d'obstacles routiers, en vue d'application d'assistance à la conduite automobile.A l'issue d'une étude bibliographique, nous avons constaté que la problématique de détection d'obstacles routiers, notamment des piétons, à l'aide d'une caméra embarquée, ne peut être résolue convenablement sans recourir aux techniques de reconnaissance de catégories d'objets dans les images. Ainsi, une étude complète du processus de la reconnaissance est réalisée, couvrant les techniques de représentation,de classification et de fusion d'informations. Les contributions de cette thèse se déclinent principalement autour de ces trois axes.Notre première contribution concerne la conception d'un modèle d'apparence locale basée sur un ensemble de descripteurs locaux SURF (Speeded Up RobustFeatures) représentés dans un Vocabulaire Visuel Hiérarchique. Bien que ce modèle soit robuste aux larges variations d'apparences et de formes intra-classe, il nécessite d'être couplé à une technique de classification permettant de discriminer et de catégoriser précisément les objets routiers. Une deuxième contribution présentée dans la thèse porte sur la combinaison du Vocabulaire Visuel Hiérarchique avec un classifieur SVM.Notre troisième contribution concerne l'étude de l'apport d'un module de fusion multimodale permettant d'envisager la combinaison des images visibles et infrarouges.Cette étude met en évidence de façon expérimentale la complémentarité des caractéristiques locales et globales ainsi que la modalité visible et celle infrarouge.Pour réduire la complexité du système, une stratégie de classification à deux niveaux de décision a été proposée. Cette stratégie est basée sur la théorie des fonctions de croyance et permet d'accélérer grandement le temps de prise de décision.Une dernière contribution est une synthèse des précédentes : nous mettons à profit les résultats d'expérimentations et nous intégrons les éléments développés dans un système de détection et de suivi de piétons en infrarouge-lointain. Ce système a été validé sur différentes bases d'images et séquences routières en milieu urbain. / The aim of this thesis arises in the context of Embedded-vision system for road obstacles detection and recognition : application to driver assistance systems. Following a literature review, we found that the problem of road obstacle detection, especially pedestrians, by using an on-board camera, cannot be adequately resolved without resorting to object recognition techniques. Thus, a preliminary study of the recognition process is presented, including the techniques of image representation, Classification and information fusion. The contributions of this thesis are organized around these three axes. Our first contribution is the design of a local appearance model based on SURF (Speeded Up Robust Features) features and represented in a hierarchical Codebook. This model shows considerable robustness with respect to significant intra-class variation of object appearance and shape. However, the price for this robustness typically is that it tends to produce a significant number of false positives. This proves the need for integration of discriminative techniques in order to accurately categorize road objects. A second contribution presented in this thesis focuses on the combination of the Hierarchical Codebook with an SVM classifier.Our third contribution concerns the study of the implementation of a multimodal fusion module that combines information from visible and infrared spectrum. This study highlights and verifies experimentally the complementarities between the proposed local and global features, on the one hand, and visible and infrared spectrum on the other hand. In order to reduce the complexity of the overall system, a two-level classification strategy is proposed. This strategy, based on belieffunctions, enables to speed up the classification process without compromising there cognition performance. A final contribution provides a synthesis across the previous ones and involves the implementation of a fast pedestrian detection systemusing a far-infrared camera. This system was validated with different urban road scenes that are recorded from an onboard camera.
|
267 |
Data-driven methods for estimation of dynamic OD matricesEriksson, Ina, Fredriksson, Lina January 2021 (has links)
The idea behind this report is based on the fact that it is not only the number of users in the traffic network that is increasing, the number of connected devices such as probe vehicles and mobile sources has increased dramatically in the last decade. These connected devices provide large-scale mobility data and new opportunities to analyze the current traffic situation as they traverse through the network and continuously send out different types of information like Global Positioning System (GPS) data and Mobile Network Data (MND). Travel demand is often described in terms of an Origin Destination (OD) matrix which represents the number of trips from an origin zone to a destination zone in a geographic area. The aim of this master thesis is to develop and evaluate a data-driven method for estimation of dynamic OD matrices using unsupervised learning, sensor fusion and large-scale mobility data. Traditionally, OD matrices are estimated based on travel surveys and link counts. The problem is that these sources of information do not provide the quality required for online control of the traffic network. A method consisting of an offline process and an online process has therefore been developed. The offline process utilizes historical large-scale mobility data to improve an inaccurate prior OD matrix. The online process utilizes the results and tuning parameters from the offline estimation in combination with real-time observations to describe the current traffic situation. A simulation study on a toy network with synthetic data was used to evaluate the data-driven estimation method. Observations based on GPS data, MND and link counts were simulated via a traffic simulation tool. The results showed that the sensor fusion algorithms Kalman filter and Kalman filter smoothing can be used when estimating dynamic OD matrices. The results also showed that the quality of the data sources used for the estimation is of high importance. Aggregating large-scale mobility data as GPS data and MND by using the unsupervised learning method Principal Component Analysis (PCA) improves the quality of the large-scale mobility data and so the estimation results. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
|
268 |
Absolute and Relative Navigation of an sUAS Swarm Using Integrated GNSS, Inertial and Range RadiosHuff, Joel E. January 2018 (has links)
No description available.
|
269 |
A Multi-modal Emotion Recognition Framework Through The Fusion Of Speech With Visible And Infrared ImagesSiddiqui, Mohammad Faridul Haque 29 August 2019 (has links)
No description available.
|
270 |
Map Based Sensor Fusion for Lane Boundary Estimation on ADAS / Sensorfusion med Kartdata för Estimering av Körfältsgränser på ADASFaghi, Puya January 2023 (has links)
A vehicles ability to detect and estimate its surroundings is important for ensuring the safety of the vehicle and passengers regardless of the level of vehicle autonomy. With an improved road and lane estimation, advanced driver-assistance systems will be able to provide earlier and more accurate warnings and actions to prevent a possible accident. Current lane boundary estimations rely on camera and inertial sensor data to detect and estimate relevant lane boundaries in the vehicles surroundings. The current lane boundary estimation system struggles to provide correct estimations at distances exceeding 75 meters and has a performance which is affected by environmental effects. The methods in this thesis show how map data, together with sensor fusion with radar, camera, inertial measurement unit and global navigation satellite system data is able to provide an improvement to the lane boundary estimations. The map based estimation system is implemented and evaluated for high speed roads (highways and country roads) where lane boundary estimations for distances above 75 meters are needed. The results are conducted in a simulate environment and show how the map based system is able to correct unreliable sensor input to provide more precise boundary estimations. The map based system is also able to provide an up to 36% relative increase in correctly identified objects within ego vehicles lane between 12.5-150 meters in front of ego vehicle. The results indicate the ability to extend the horizon in which driver-assistance functions are able to operate, thus increasing the safety of future autonomous or semi-autonomous vehicles. Future work within the subject is needed to apply map based estimations on urban areas. The precision of such an system also relies on precise positional data. Incorporation of more precise global navigation data would be able to show an increased performance. / Ett fordons förmåga att upptäcka och uppskatta sin omgivning är viktig för att säkerställa fordonets och passagerarnas säkerhet oavsett fordonets autonominivå. Med en förbättrad väg- och körfältsuppskattning kommer avancerade förarassistanssystem att kunna ge tidigare och mer exakta varningar och åtgärder för att förhindra en eventuell olycka. Aktuella estimeringar av körfältsgränser är beroende av kamera och tröghetssensordata för att upptäcka och uppskatta relevanta körfältsgränser i fordonets omgivning. Det nuvarande estimerings-systemet upvisar inkorrekta uppskattningar på avstånd över 75 meter och har en prestanda som påverkas av den omgivande miljön. Metoderna i detta examensarbete visar hur kartdata, tillsammans med sensorfusion av radar, kamera, tröghetsmätenhet och globala satellitnavigeringsdata, kan ge en förbättrad estimering av körfältsgränser. Det kartbaserade systemet är implementerat och utvärderat för höghastighetsvägar (motorvägar och landsvägar) där estimeringar av körfältsgränser för avstånd över 75 meter behövs. Resultaten utförs i en simulerad miljö och visar hur det kartbaserade systemet kan korrigera opålitlig sensorinmatning för att ge mer exakta gränsuppskattningar. Systemet kan också ge en upp till 36% relativ ökning av korrekt identifierade objekt inom ego-fordonets körfält mellan 12.5-150 meter framför ego-fordonet. Resultaten indikerar förmågan att förlänga horisonten som förarassistansfunktioner kan fungera i, vilket ökar säkerheten för framtida autonoma eller halvautonoma fordon. Framtida arbeten inom ämnet behövs för att tillämpa kartbaserade uppskattningar på tätorter. Precisionen hos ett sådant system är också beroende av mer exakt positionsdata. Inkorporering av mer exakt global navigationsdata skulle i detta fall kunna visa en ökad sytemprestanda.
|
Page generated in 0.0608 seconds