• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The interspike-interval statistics of non-renewal neuron models

Schwalger, Tilo 30 September 2013 (has links)
Um die komplexe Dynamik von Neuronen und deren Informationsverarbeitung mittels Pulssequenzen zu verstehen, ist es wichtig, die stationäre Puls-Aktivität zu charakterisieren. Die statistischen Eigenschaften von Pulssequenzen können durch vereinfachte stochastische Neuronenmodelle verstanden werden. Eine gut ausgearbeitete Theorie existiert für die Klasse der Erneuerungsmodelle, welche die statistische Unabhängigkeit der Interspike-Intervalle (ISI) annimmt. Experimente haben jedoch gezeigt, dass viele Neuronen Korrelationen zwischen ISIs aufweisen und daher nicht gut durch einen Erneuerungsprozess beschrieben werden. Solche Korrelationen können durch Nichterneuerungs-Modelle erfasst werden, welche jedoch theoretisch schlecht verstanden sind. Diese Arbeit ist eine analytische Studie von Nichterneuerungs-Modellen, die zwei bedeutende Korrelationsmechanismen untersucht: farbiges Rauschen, welches zeitlich-korrelierten Input darstellt, und negative Puls-Rückkopplung, welche Feuerraten-Adaption realisiert. Für das "Perfect-Integrate-and-Fire" (PIF) Modell, welchen durch ein allgemeines Gauss''sches farbiges Rauschen getrieben ist, werden die Statistiken höherer Ordnung der Output-Pulssequenz hergeleitet, insbesondere der Koeffizient der Variation, der serielle Korrelationskoeffizient (SCC), die ISI-Dichte und der Fano-Faktor. Weiterhin wird die Dynamik des PIF Modells mit Puls-getriggertem Adaptionsstrom und weissem Stromrauschen im Detail analysiert. Die Theorie liefert einen Ausdruck für den SCC, der für schwaches Rauschen aber beliebige Adaptions-Stärke und Zeitskale gültig ist, sowie die lineare Antwortfunktion und das Leistungsspektrum der Pulssequenz. Ausserdem wird gezeigt, dass ein stochastischer Adaptionsstrom wie ein langsames farbiges Rauschen wirkt, was ermöglicht, die dominierende Quellen des Rauschen in einer auditorischen Rezeptorzelle zu bestimmen. Schliesslich wird der SCC für das fluktuations-getriebene Feuerregime berechnet. / To understand the complex dynamics of neurons and its ability to process information using a sequence of spikes, it is vital to characterize its stationary spontaneous spiking activity. The statistical properties of spike trains can be explained by reduced stochastic neuron models that account for various sources of noise. A well-developed theory exists for the class of renewal models, in which the interspike intervals (ISIs) are statistically independent. However, experimental studies show that many neurons are not well described by a renewal process because of correlations between ISIs. Such correlations can be captured by generalized, non-renewal models, which are, however, poorly understood theoretically. This thesis represents an analytical study of non-renewal models, focusing on two prominent correlation mechanisms: colored-noise driving representing temporally correlated inputs, and negative feedback currents realizing spike-frequency adaptation. For the perfect integrate-and-fire (PIF) model driven by a general Gaussian colored noise input, the higher-order statistics of the output spike train is derived using a weak-noise analysis of the Fokker-Planck equation. This includes formulas for the coefficient of variation, the serial correlation coefficient (SCC), the ISI density and the Fano factor. Then, the dynamics of a PIF model with a spike-triggered adaptation and a white-noise current is analyzed in detail. The theory yields an expression for the SCC valid for weak noise but arbitrary adaptation strengths and time scale, and also provides the linear response to time-dependent stimuli and the spike train power spectrum. Furthermore, it is shown that a stochastic adaptation current acts like a slow colored noise, which permits to determine the source of spiking variability observed in an auditory receptor neuron. Finally, the SCC is calculated for the fluctuation-driven spiking regime by assuming discrete states of colored noise or adaptation current.
2

Theoretical mechanisms of information filtering in stochastic single neuron models

Blankenburg, Sven 16 August 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit Mechanismen, die in Einzelzellmodellen zu einer frequenzabhängigen Informationsübertragung führen können. Um dies zu untersuchen, werden Methoden aus der theoretischen Physik (Statistische Physik) und der Informationstheorie angewandt. Die Informationsfilterung in mehreren stochastischen Neuronmodellen, in denen unterschiedliche Mechanismen zur Informationsfilterung führen können, werden numerisch und, falls möglich, analytisch untersucht. Die Bandbreite der betrachteten Modelle erstreckt sich von reduzierten strombasierten ’Integrate-and-Fire’ (IF) Modellen bis zu biophysikalisch realistischeren leitfähigkeitsbasierten Modellen. Anhand numerischer Untersuchungen wird aufgezeigt, dass viele Varianten der IF-Neuronenmodelle vorzugsweise Information über langsame Anteile eines zeitabhängigen Eingangssignals übertragen. Der einfachste Vertreter der oben genannten Klasse der IF-Neuronmodelle wird dahingehend erweitert, dass ein Konzept von neuronalem ’Gedächtnis’, vermittelst positiver Korrelationen zwischen benachbarten Intervallen aufeinander- folgender Spikes, integriert wird. Dieses Model erlaubt eine analytische störungstheoretische Untersuchung der Auswirkungen positiver Korrelationen auf die Informationsfilterung. Um zu untersuchen, wie sich sogenannte ’unterschwelligen Resonanzen’ auf die Signalübertragung auswirken, werden Neuronenmodelle mit verschiedenen Nichtlinearitäten anhand numerischer Computersimulationen analysiert. Abschließend wird die Signalübertragung in einem neuronalen Kaskadensystem, bestehend aus linearen und nichtlinearen Elementen, betrachtet. Neuronale Nichtlinearitäten bewirken eine gegenläufige Abhängigkeit (engl. "trade-off") zwischen qualitativer, d.h. frequenzselektiver, und quantitativer Informations-übertragung, welche in allen von mir untersuchten Modellen diskutiert wird. Diese Arbeit hebt die Gewichtigkeit von Nichtlinearitäten in der neuronalen Informationsfilterung hervor. / Neurons transmit information about time-dependent input signals via highly non-linear responses, so-called action potentials or spikes. This type of information transmission can be frequency-dependent and allows for preferences for certain stimulus components. A single neuron can transmit either slow components (low pass filter), fast components (high pass filter), or intermediate components (band pass filter) of a time-dependent input signal. Using methods developed in theoretical physics (statistical physics) within the framework of information theory, in this thesis, cell-intrinsic mechanisms are being investigated that can lead to frequency selectivity on the level of information transmission. Various stochastic single neuron models are examined numerically and, if tractable analytically. Ranging from simple spiking models to complex conductance-based models with and without nonlinearities, these models include integrator as well as resonator dynamics. First, spectral information filtering characteristics of different types of stochastic current-based integrator neuron models are being studied. Subsequently, the simple deterministic PIF model is being extended with a stochastic spiking rule, leading to positive correlations between successive interspike intervals (ISIs). Thereafter, models are being examined which show subthreshold resonances (so-called resonator models) and their effects on the spectral information filtering characteristics are being investigated. Finally, the spectral information filtering properties of stochastic linearnonlinear cascade neuron models are being researched by employing different static nonlinearities (SNLs). The trade-off between frequency-dependent signal transmission and the total amount of transmitted information will be demonstrated in all models and constitutes a direct consequence of the nonlinear formulation of the models.

Page generated in 0.1462 seconds