• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2222
  • 981
  • 333
  • 219
  • 159
  • 110
  • 94
  • 85
  • 78
  • 55
  • 48
  • 43
  • 30
  • 25
  • 23
  • Tagged with
  • 5120
  • 3078
  • 1492
  • 695
  • 599
  • 581
  • 385
  • 372
  • 370
  • 366
  • 304
  • 291
  • 279
  • 278
  • 272
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

Eventos extremos de precipitação no Rio Grande do Sul no Século XX a partir de dados de reanálise e registros históricos

Valente, Pedro Teixeira January 2018 (has links)
Este trabalho elaborou séries temporais de eventos extremos de precipitação, de 1901 a 2000 para o Estado do Rio Grande do Sul (RS). Utilizou-se reanálises da Universidade de Delaware (EUA), registros históricos de jornais, registros oficiais, e dados de 17 estações meteorológicas do INMET no RS. Identificou-se anomalias climáticas (positivas e negativas) de precipitação ao longo do século XX em diferentes pontos do RS. Adotou-se como evento extremo anomalias superiores (inferiores) a 50 mm (-50 mm). As séries foram aplicadas a um zoneamento da precipitação do RS visando avaliar a variabilidade e a distribuição, assim como a influência do El Niño – Oscilação Sul (ENOS). O zoneamento escolhido foi: Campanha, Litoral e Planalto. Por fim, foi gerada uma classificação da variabilidade da precipitação durante eventos ENOS para o RS, no século XX, com base na classificação do ENOS na região do Niño 3.4. Identificou-se que as zonas Campanha e Planalto são mais suscetíveis à variabilidade do ENOS com média de 75 mm em eventos positivos e -67 mm em eventos negativos de precipitação, e o Litoral apresenta menor influência aparente, indicando uma subdivisão desta zona em dois setores devido ao seu contraste latitudinal. A maior anomalia mensal para os meses neutros foi de 428,90 mm (abril de 1959), 224,51 (abril de 1941) mm em anos de El Niño e 174,55 mm (janeiro de 1938) em La Niña. Por fim, observouse que o zoneamento não se mostrou adequado para esta análise, pois o Planalto, maior zona em área, apresenta uma amplitude de 1200 m na altimetria, e o Litoral apresenta um comportamento diferenciado devido ao contraste latitudinal e a escarpa do planalto no litoral norte. Identificou-se que os primeiros 50 anos do século XX apresentam equivalência entre a região do Niño 3.4 e o RS. A partir de 1950, os eventos no RS passaram a ter uma classe maior do que no Niño 3.4, ou seja, houve um aumento (diminuição) médio de 50 mm (-25 mm) nas anomalias positivas (negativas) de precipitação no RS. Assim, nos últimos 50 anos, um evento de uma determinada classe na região Niño 3.4 pode gerar anomalias de precipitação maiores no Rio Grande do Sul. / This work elaborated time series of precipitation extreme events (1901-2000) for the Rio Grande do Sul State (RS). Reanalysis from University of Delaware, newspapers historical records, official records and data from 17 INMET meteorological stations were used. Precipitation climatic anomalies (positive and negative) were identified at different points of RS during the 20th century. It was found that positive (negative) anomalies were above (below) of 50 mm (-50 mm). The time series were applied to a RS precipitation zoning to spatialize the variability and distribution, as well the influence of El Niño – South Oscillation (ENSO). The zoning was: Campanha, Litoral and Planalto. Afterwards, a classification of RS precipitation variability during ENSO events was generated based on Niño 3.4 region classification. It was identified that Campanha and Planalto zones are more susceptible to ENSO variability, pointing a mean of 75 (-67) mm in positive (negative) precipitation events, and the Litoral showed less apparent influence, indicating a subdivision of this zone into two sectors due it’s latitudinal contrast. The highest monthly anomaly in neutral months was 428,90 mm (April 1959), 224,51 mm (April 1941) in El Niño events and 174,55 mm (January 1938) in La Niña events. Finally, it was observed that the zoning was not adequate for this analysis, since the Planalto, largest zone, presents 1200 m of amplitude in altimetry and the Litoral presents differentiated behavior due the latitudinal contrast and the escarpment of the Plateau on the north coast. It was identified that the first 50 years of the 20th century presented equivalence between Niño 3.4 region and the RS classifications. After 1950, the events in RS started to show a higher class than in Niño 3.4. There was an average increase (decrease) of 50 mm (-25 mm) in positive (negative) precipitation anomalies in RS. Then, in the last 50 years, an event of a certain category may generate higher precipitation anomalies at the Rio Grande do Sul.
622

Utilização de redes neurais na análise e previsão de séries temporais / Time series prediction using artificial neural networks

Fernandes, Luiz Gustavo Leao January 1995 (has links)
Este trabalho a um estudo a respeito da aplicação de Redes Neurais Artificiais (RNAs), mais especificamente do modelo perceptron multi-camadas com aprendizado por retro-propagação de erros, a previsão de valores futuros de Series Temporais. 0 estudo foi realizado através da realização de previsões a partir de uma determinada arquitetura de rede neural, a qual é construída com base na analise estatística da serie, para três series reais. A primeira representa o Índice mensal de passageiros das linhas aéreas americanas entre janeiro de 1960 e dezembro de 1971, a segunda corresponde ao índice pluviométrico anual da cidade de Fortaleza no estado do Ceara entre 1849 e 1984, e a terceira trata do índice mensal de produção industrial do estado do Rio Grande do Sul entre janeiro de 1981 e julho de 1993. As duas primeiras series são exemplos clássicos utilizados no estudo dos modelos estatísticos aplicados a previsão de Series Temporais. Os resultados obtidos com as RNAs foram comparados aos progn6sticos realizados pelo método economêtrico que apresenta os melhores resultados para o problema da previsão de Series Temporais: o método da decomposição da serie em suas componentes básicas não-observáveis (tendência, sazonalidade, ciclo e irregular). Tais resultados mostraram que as RNAs podem apresentar excelentes níveis de precisão em seus prognósticos, indicando sua adaptação ao problema da previsão de valores futuros de Séries Temporais. / This work presents a study of the prediction power of Artificial Neural Networks (ANN) in comparison with prediction capability of traditional Time Series models, more specifically the Unobservable Components Models (UCM). The data used to perform the study was the monthly american airlines passengers, the annual rainfall in Fortaleza, Brazil and the monthly gross industrial output for the state of Rio Grande do Sul, Brazil. The results show that Artificial Neural Networks can outperform the forecasts of Unobservable Components Models.
623

Predição de séries temporais utilizando algoritmos genéticos

Marques, Ivonei da Silva January 2012 (has links)
Este trabalho apresenta um estudo sobre o paradigma de Algoritmos Genéticos aplicados a área de Predições de Séries Temporais. O resultado deste trabalho é apresentado na forma de comparação dos resultados obtidos entre o Modelo Clássico de Predição (UCM), Redes Neurais Artificiais (RNAs) e o modelo de Algoritmos Genéticos desenvolvido neste trabalho. Este estudo foi realizado trabalhando-se basicamente com o Índice Mensal de Produção Industrial do Estado do Rio Grande do Sul fornecido pelo IBGE (Instituto Brasileiro de Geografia e Estatística). Os resultados obtidos mostram que os Algoritmos Genéticos podem atingir níveis satisfatórios de precisão em relação aos valores preditos quando comparados com os valores reais. A validação é feita com predições de um passo à frente e de sete passos à frente. Estas predições são em relação aos sete meses iniciais do ano de 1993. / This work presents a study of Genetic Algorithms paradigm applied to Forecasting Time Series. The results are compared with the obtained with the Classic Model of Prediction (UCM), Artificial Neural Networks (RNAs). This study was accomplished using with the Monthly Index of Industrial Production of the State of Rio Grande do Sul, supplied by the IBGE(Instituto Brasileiro de Geografia e Estatística). The results show that the Genetic Algorithms can accomplish a satisfactory precision when compared with the real values. The validation is made with predictions, one and seven steps ahead. These predictions are equivalent to the seven initial months of 1993.
624

Essays in High Dimensional Time Series Analysis

Yousuf, Kashif January 2019 (has links)
Due to the rapid improvements in the information technology, high dimensional time series datasets are frequently encountered in a variety of fields such as macroeconomics, finance, neuroscience, and meteorology. Some examples in economics and finance include forecasting low frequency macroeconomic indicators, such as GDP or inflation rate, or financial asset returns using a large number of macroeconomic and financial time series and their lags as possible covariates. In these settings, the number of candidate predictors (pT) can be much larger than the number of samples (T), and accurate estimation and prediction is made possible by relying on some form of dimension reduction. Given this ubiquity of time series data, it is surprising that few works on high dimensional statistics discuss the time series setting, and even fewer works have developed methods which utilize the unique features of time series data. This chapter consists of three chapters, and each one is self contained. The first chapter deals with high dimensional predictive regressions which are widely used in economics and finance. However, the theory and methodology is mainly developed assuming that the model is stationary with time invariant parameters. This is at odds with the prevalent evidence for parameter instability in economic time series. To remedy this, we present two L2 boosting algorithms for estimating high dimensional models in which the coefficients are modeled as functions evolving smoothly over time and the predictors are locally stationary. The first method uses componentwise local constant estimators as base learner, while the second relies on componentwise local linear estimators. We establish consistency of both methods, and address the practical issues of choosing the bandwidth for the base learners and the number of boosting iterations. In an extensive application to macroeconomic forecasting with many potential predictors, we find that the benefits to modeling time variation are substantial and are present across a wide range of economic series. Furthermore, these benefits increase with the forecast horizon and with the length of the time series available for estimation. This chapter is jointly written with Serena Ng. The second chapter deals with high dimensional non-linear time series models, and deals with the topic of variable screening/targeting predictors. Rather than assume a specific parametric model a priori, this chapter introduces several model free screening methods based on the partial distance correlation and developed specifically to deal with time dependent data. Methods are developed both for univariate models, such as nonlinear autoregressive models with exogenous predictors (NARX), and multivariate models such as linear or nonlinear VAR models. Sure screening properties are proved for our methods, which depend on the moment conditions, and the strength of dependence in the response and covariate processes, amongst other factors. Finite sample performance of our methods is shown through extensive simulation studies, and we show the effectiveness of our algorithms at forecasting US market returns. This chapter is jointly written with Yang Feng. The third chapter deals with variable selection for high dimensional linear stationary time series models. This chapter analyzes the theoretical properties of Sure Independence Screening (SIS), and its two stage combination with the adaptive Lasso, for high dimensional linear models with dependent and/or heavy tailed covariates and errors. We also introduce a generalized least squares screening (GLSS) procedure which utilizes the serial correlation present in the data. By utilizing this serial correlation when estimating our marginal effects, GLSS is shown to outperform SIS in many cases. For both procedures we prove two stage variable selection consistency when combined with the adaptive Lasso.
625

"It's stupid being a girl!" The Tomboy character in Selected Children’s Series Fiction

ricepot@gmail.com, Cynthia Mei-Li Chew January 2009 (has links)
The tomboy is a female character that has featured prominently in many popular works of children's literature. Typically, the tomboy is a prepubescent or teenaged girl who is frustrated by the expectations and limitations placed upon her because she is female. She is reluctant to conform to feminine standards of appearance and behaviour. This thesis examines the representation and evolution of the tomboy character in two distinct categories of children's series fiction, 'books in a series' and 'series books'[1], focusing on narratological elements such as plot, characterisation and series structure, as well as their publishing context, exploring issues of authorial intent, editorial decisions and, in certain cases, the official revision of texts. 'Books in a series' are usually presented as bildungsroman – that is, stories, or in this case, series, of development. In these narratives, time progresses and the characters age; tomboyishness is depicted as a temporary phase which is grown out of when a girl matures, and learns to accept and perform femininity. In contrast, 'series books' are centred on adventure and/or mystery stories, rather than on the process of growing up – the characters' ages are typically frozen, and tomboyishness is a distinguishing character attribute which remains for the course of the series. In studying children's literature, it is important to acknowledge that the audience of children's literature includes adults as well as children – it is after all, adults who determine and control the production, distribution and legitimisation of texts for children. Originally, children's literature was written specifically for the religious, moral, behavioural and social instruction of children, rather than for their entertainment. Although appearing less overtly didactic in recent times, the production of children’s literature has continued to be driven by the adult concern for ideological appropriateness, and the desire to responsibly educate its young readers. This concern and desire are fuelled by the underlying and persistent belief that children are like sponges and will absorb whatever they are exposed to[2], including representations of gender difference and gender performance. The ways in which the tomboy character has evolved in the children's series are a direct reflection of the shifts in society’s ideas about gender, the gendered education of children, and the adult conception of what is ideologically appropriate for the children’s text. The tomboy character in children's literature has been an important cultural marker of both our evolving and constant values. It is clear that over time gender roles have changed significantly, allowing girls in series fiction to be sleuths, rescuers, warriors and adventurers, but through all of this change, the representation of the tomboy has always reflected adults' conception of what is ideologically appropriate and normal and therefore desirable, in the representation of masculinity and femininity, gender and sexuality in children’s literature – a normality and system of gender based on a steadfast heterosexual hegemony. [1] Inness, Sherrie A., ed. Nancy Drew and Company: Culture, Gender, and Girls' Series. Bowling Green, OH: Bowling Green State University Popular Press, 1997, p.2. [2] Sternheimer, Karen. It's Not the Media: The Truth About Pop Culture's Influence on Children. Boulder, CO: Westview, 2003, p.181.
626

An investigation of long-term dependence in time-series data

Ellis, Craig, University of Western Sydney, Macarthur, Faculty of Business and Technology January 1998 (has links)
Traditional models of financial asset yields are based on a number of simplifying assumptions. Among these are the primary assumptions that changes in asset yields are independent, and that the distribution of these yields is approximately normal. The development of financial asset pricing models has also incorporated these assumptions. A general feature of the pricing models is that the relationship between the model variables is fundamentally linear. Recent empirical research has however identified the possibility for these relations to be non-linear. The empirical research focused primarily on methodological issues relating to the application of the classical rescaled adjusted range. Some of the major issues investigated were: the use of overlapping versus contiguous subseries lengths in the calculation of the statistic's Hurst exponent; the asymptotic distribution of the Hurst exponent for Gaussian time-series and long-term dependent fBm's; matters pertaining to the estimation of the expected rescaled adjusted range. Empirical research in this thesis also considered alternate applications of rescaled range analysis, other than modelling non-linear long-term dependence. Issues relating to the use of the technique for estimating long-term dependent ARFIMA processes, and some implications of long-term dependence for financial time-series have both been investigated. Overall, the general shape of the asymptotic distribution of the Hurst exponent has been shown to be invariant to the level of dependence in the underlying series. While the rescaled adjusted range is a biased indicator of the level of long-term dependence in simulated time-series, it was found that the bias could be efficiently modelled. For real time-series containing structured short-term dependence, the bias was shown to be inconsistent with the simulated results. / Doctor of Philosophy (PhD)
627

Factor analysis of high dimensional time series

Heaton, Chris, Economics, Australian School of Business, UNSW January 2008 (has links)
This thesis presents the results of research into the use of factor models for stationary economic time series. Two basic scenarios are considered. The first is a situation where a large number of observations are available on a relatively small number variables, and a dynamic factor model is specified. It is shown that a dynamic factor model may be derived as a representation of a VARMA model of reduced spectral rank observed subject to measurement error. In some cases the resulting factor model corresponds to a minimal state-space representation of the VARMA plus noise model. Identification is discussed and proved for a fairly general class of dynamic factor model, and a frequency domain estimation procedure is proposed which has the advantage of generalising easily to models with rich dynamic structures. The second scenario is one where both the number of variables and the number of observations jointly diverge to infinity. The principal components estimator is considered in this case, and consistency is proved under assumptions which allow for much more error cross-correlation than the previously published theorems. Ancillary results include finite sample/variables bounds linking population principal components to population factors, and consistency results for principal components in a dual limit framework under a `gap' condition on the eigenvalues. A new factor model, named the Grouped Variable Approximate Factor Model, is introduced. This factor model allows for arbitrarily strong correlation between some of the errors, provided that the variables corresponding to the strongly correlated errors may be arranged into groups. An approximate instrumental variables estimator is proposed for the model and consistency is proved.
628

'n Vergelykende ondersoek na die uitbeelding van identiteit in gekose dokumentasie van die Performance art-werke van Cindy Sherman en Berni Searle / A. Bekker

Bekker, Ané January 2008 (has links)
Thesis (M.A. (History of Arts))--North-West University, Potchefstroom Campus, 2008.
629

ICA-clustered Support Vector Regressions in Time Series Stock Price Forecasting

Chen, Tse-Cheng 29 August 2012 (has links)
Financial time-series forecasting has long been discussed because of its vitality for making informed investment decisions. This kind of problem, however, is intrinsically challenging due to the data dynamics in nature. Most of the research works in the past focus on artificial neural network (ANN)-based approaches. It has been pointed out that such approaches suffer from explanatory power and generalized prediction ability though. The objective of this research is thus to propose a hybrid approach for stock price forecasting. Independent component analysis (ICA) is employed to reveal the latent structure of the observed time-series and remove noise and redundancy in the structure. It further assists clustering analysis. Support vector regression (SVR) models are then applied to enhance the generalization ability with separate models built based on the time-series data of companies in each individual cluster. Two experiments are conducted accordingly. The results show that SVR has robust accuracy performance. More importantly, SVR models with ICA-based clustered data perform better than the single SVR model with all data involved. Our proposed approach does enhance the generalization ability of the forecasting models, which justifies the feasibility of its applications.
630

Forget Prince Charming. I want a vampire in a shiny silver Volvo. : En studie av manlig sexualitet i två moderna vampyrromaner / Forget Prince Charming. I want a vampire in a shiny silver Volvo. : A study of male sexuality in two contemporary vampire novels

Wallenbro, Hanna January 2015 (has links)
The popularity of vampire novels has come and gone over the years. And the romantic novels seem more popular than ever before. The male vampire have taken the stereotyperole as a sexual object. But what is it that makes the male characters desirable? The vampire genre was developed from defining female vampires as sexual freeand liberal but with a punishment awaiting them. Now the male side has been given thisrole, but without the punishment. Instead it gets involved with human females andpromises them true love forever and ever. This disquisition takes a closer look on thepopular male vampires: Eric Northman from Charlaine Harris Sookie Stackhouse Novelsand Edward Cullen from Stephenie Meyer’s Twilight Series. Both novels display various sexual norms, two males with different masculinities.In Twilight Series society advocates sexual restraint and intercourse for reproductionpurposes only. While Sookie Stackhouse Novels projects a sexual liberal society wherehomosexuals and heterosexuals are equal in existence and where intercourse is forpleasure and everyone’s private right. By using character analysis and critical discourse analysis regarding to thedisplayed state of the society in the novels, the purpose of this disquisition is to analysehow Eric Northman's and Edward Cullen's masculinity and sexuality are shaped.

Page generated in 0.0643 seconds