Spelling suggestions: "subject:"tet"" "subject:"beet""
461 |
Linear regularity of closed sets in Banach spaces. / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
by Zang Rui. / "Nov 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 78-82) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
462 |
A finite element based level set method for structural topology optimization. / CUHK electronic theses & dissertations collectionJanuary 2009 (has links)
A finite element (FE) based level set method is proposed for structural topology optimization problems in this thesis. The level set method has become a popular tool for structural topology optimization in recent years because of its ability to describe smooth structure boundaries and handle topological changes. There are commonly two stages in the optimization process: the stress analysis stage and the boundary evolution stage. The first stage is usually performed with the finite element method (FEM) while the second is often realized by solving the level set equation with the finite difference method (FDM). The first motivation for developing the proposed method is the desire to unify the techniques of both stages within a uniform framework. In addition, there are many problems involving irregular design domains in practice, the FEM is more powerful than the FDM in dealing with these problems. This is the second motivation for this study. / Numerical examples are involved in this thesis to illustrate the reliability of the proposed method. Problems on both regular and irregular design domains are considered and different meshes are tested and compared. / Solving the level set equation with the standard Galerkin FEM might produce unstable results because of the hyperbolic characteristic of this equation. Therefore, the streamline diffusion finite element method (SDFEM), a stabilized method, is employed to solve the level set equation. In addition to the advantage of simplicity, this method generates a system of equations with a constant, symmetric, and positive defined coefficient matrix. Furthermore, this matrix can be diagonalized by virtue of the lumping technique in structural dynamics. This makes the cost in solving and storing quite low. It is more important that the lumped coefficient matrix may help to improve the stability under some circumstance. / The accuracy of the finite element based level set method (FELSM) is compared with that of the finite difference based level set method (FDLSM). The FELSM is a first-order accurate algorithm but we prove that its accuracy is enough for structural optimization problems considered in this study. Even higher-order accurate FDLSM schemes are used, the numerical results are still the same as those obtained by FELSM. It is also shown that if the Courant-Friedreichs-Lewy (CFL) number is large, the FELSM is more robust and accurate than FDLSM. / The reinitialization equation is also solved with the SDFEM and an extra diffusion term is added to improve the stability near the boundary. We propose a criterion to select the factor of the diffusion term. Due to numerical errors and the diffusion term, boundary will drift during the process of reinitialization. To constrain the boundary from moving, a Dirichlet boundary condition is enforced. Within the framework of FEM, this enforcement can be conveniently preformed with the Lagrangian multiplier method or the penalty method. / Velocity extension is discussed in this thesis. A natural extension method and a partial differential equation (PDE)-based extension method are introduced. Some related topics, such as the "ersatz" material approach and the recovery of stresses, are discussed as well. / Xing, Xianghua. / Adviser: Michael Yu Wang. / Source: Dissertation Abstracts International, Volume: 71-01, Section: B, page: 0628. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 102-113). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
|
463 |
Parallel data-processing on GPGPU / Parallel data-processing on GPGPUVansa, Radim January 2012 (has links)
Modern graphic cards are no longer limited to 3D image rendering. Frameworks such as OpenCL enable developers to harness the power of many-core architectures for general-purpose data-processing. This thesis is focused on elementary primitives often used in database management systems, particularly on sorting and set intersection. We present several approaches to these problems and evalute results of benchmarked implementations. Our conclusion is that both tasks can be successfully solved using graphic cards with significant speedup compared to the traditional applications computing solely on multicore CPU.
|
464 |
Homeomorfismos do toro cujo conjunto de rotação é um segmento de reta / Torus homeomorphisms whose rotation set is a line segmentRomenique da Rocha Silva 27 July 2007 (has links)
Um dos teoremas conhecidos de Poincaré afirma: Seja f um homeomorfismo do círculo que preserva orientação. Se p/q, com mdc(p, q) = 1, é o número de rotação de f, então f possui um ponto periódico de período q. Quando o conceito de número de rotação para um homeomorfismo do círculo é generalizado para um homeomorfismo f : T2 ? T2 homotópico à identidade, o resultado é um subconjunto convexo do plano R2, chamado conjunto de rotação e é denotado por ½(F) onde F é um levantamento de f. No caso que ½(F) tem interior não vazio, J. Franks obteve resultados análogos ao Teorema de Poincaré. Nesta dissertação estudamos um resultado análogo, obtido por Jonker e Zhang, quando ½(F) não tem interior. Mais precisamente: assumimos que ½(F) é um segmento de reta com inclinação irracional e mostramos que se 1 n(p1, p2) ? ½(F), com mdc(p1, p2, n) = 1, então f possui um ponto periódico de período n / One of the well know results of Poincaré state: Let f be an orientation preserving circle homeomorphism. If p/q, with mdc(p, q) = 1, is the rotation number of f, then there is a periodic point for f whose period is q. When the concept of rotations number, for orientation preserving circle homeomorphism, is generalized for torus homeomorphism f : T2 ? T2 that are homotopic to the identity, it results in a convex subset of R2, called rotation set and is denoted by ½(F) where F is a lifting of f. In the case that ½(F) has non-empty interior, J. Franks proved similar results to the Poincaré Theorem. In this work, when ½(F) has empty interior, we study an similar result obtained by Jonker and Zhang. More precisely: they suppose that the rotation set ½(F) is a line segment with irrational slope and demonstrate that if 1 n(p1, p2) ? ½(F), with mdc(p1, p2, n) = 1, then f has a periodic point of period n
|
465 |
Parametric shape and topology structure optimization with radial basis functions and level set method.January 2008 (has links)
Lui, Fung Yee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 83-92). / Abstracts in English and Chinese. / Acknowledgement --- p.iii / Abbreviation --- p.xii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Related Work --- p.6 / Chapter 1.2.1 --- Parametric Optimization Method and Radial Basis Functions --- p.6 / Chapter 1.3 --- Contribution and Organization of the Dissertation --- p.7 / Chapter 2 --- Level Set Method for Structure Shape and Topology Optimization --- p.8 / Chapter 2.1 --- Primary Ideas of Shape and Topology Optimization --- p.8 / Chapter 2.2 --- Level Set models of implicit moving boundaries --- p.11 / Chapter 2.2.1 --- Representation of the Boundary via Level Set Method --- p.11 / Chapter 2.2.2 --- Hamilton-Jacobin Equations --- p.13 / Chapter 2.3 --- Numerical Techniques --- p.13 / Chapter 2.3.1 --- Sign-distance function --- p.14 / Chapter 2.3.2 --- Discrete Computational Scheme --- p.14 / Chapter 2.3.3 --- Level Set Surface Re-initialization --- p.16 / Chapter 2.3.4 --- Velocity Extension --- p.16 / Chapter 3 --- Structure Topology Optimization with Discrete Level Sets --- p.18 / Chapter 3.1 --- A Level Set Method for Structural Shape and Topology Optimization --- p.18 / Chapter 3.1.1 --- Problem Definition --- p.18 / Chapter 3.2 --- Shape Derivative: an Engineering-oriented Deduction --- p.21 / Chapter 3.2.1 --- Sensitivity Analysis --- p.23 / Chapter 3.2.2 --- Optimization Algorithm --- p.28 / Chapter 3.3 --- Limitations of Discrete Level Set Method --- p.30 / Chapter 4 --- RBF based Parametric Level Set Method --- p.32 / Chapter 4.1 --- Introduction --- p.32 / Chapter 4.2 --- Radial Basis Functions Modeling --- p.33 / Chapter 4.2.1 --- Inverse Multiquadric (IMQ) Radial Basis Functions --- p.38 / Chapter 4.3 --- Parameterized Level Set Method in Structure Topology Optimization --- p.39 / Chapter 4.4 --- Parametric Shape and Topology Structure Optimization Method with Radial Basis Functions --- p.42 / Chapter 4.4.1 --- Changing Coefficient Method --- p.43 / Chapter 4.4.2 --- Moving Knot Method --- p.45 / Chapter 4.4.3 --- Combination of Changing Coefficient and Moving Knot method --- p.46 / Chapter 4.5 --- Numerical Implementation --- p.48 / Chapter 4.5.1 --- Sensitivity Calculation --- p.48 / Chapter 4.5.2 --- Optimization Algorithms --- p.49 / Chapter 4.5.3 --- Numerical Examples --- p.52 / Chapter 4.6 --- Summary --- p.65 / Chapter 5 --- Conclusion and Future Work --- p.80 / Chapter 5.1 --- Conclusion --- p.80 / Chapter 5.2 --- Future Work --- p.81 / Bibliography --- p.83
|
466 |
Permutation Groups and Puzzle Tile Configurations of Instant Insanity IIJustus, Amanda N 01 May 2014 (has links)
The manufacturer claims that there is only one solution to the puzzle Instant Insanity II. However, a recent paper shows that there are two solutions. Our goal is to find ways in which we only have one solution. We examine the permutation groups of the puzzle and use modern algebra to attempt to fix the puzzle. First, we find the permutation group for the case when there is only one empty slot at the top. We then examine the scenario when we add an extra column or an extra row to make the game a 4 × 5 puzzle or a 5 x 4 puzzle, respectively. We consider the possibilities when we delete a color to make the game a 3 × 3 puzzle and when we add a color, making the game a 5 × 5 puzzle. Finally, we determine if solution two is a permutation of solution one.
|
467 |
Character in cloth and concrete: a costume and scenic design portfolioKuhn, Lindsey LaRissa 01 May 2019 (has links)
No description available.
|
468 |
Planning in Incomplete DomainsRobertson, Jared William 01 May 2012 (has links)
Automated planning in computer science consists of finding a sequence of actions leading from an initial state to a goal state. People who have expert knowledge of the specific problem domain work with experts in automated planning to define the domain states and actions. This knowledge engineering required to create complete and correct domain descriptions for planning problems is often very costly and difficult. Our goal with incomplete planning is to allow people to program domains without the need for planning experts. Throughout the process of instruction of intelligent systems, teachers can often leave out whole procedures and aspects of action descriptions. In such cases, the alternative to making domains complete is to plan around the incompleteness. That is, given knowledge of the possible action descriptions, we seek out plans that will succeed despite any incompleteness in the domain formulation. A state in a domain consists of a set of propositions that can be either true or false. Actions in a domain require specific propositions to be true for the action to occur. Actions then add and remove propositions from the state to create a subsequent state. A valid plan consists of a sequence of actions that, starting with the initial state, change to match the goal state. An incomplete domain contains the same qualities as a complete domain, with the additional abilities of actions to possibly require a proposition to be true to initiate the action, as well as possibly adding and possibly removing propositions in the subsequent state. Actions that have possible preconditions and effects are referred to as incomplete actions. Because no prior work exists for the purpose of empirical comparisons, we compare our incomplete action planner, which we call DeFAULT, with a traditional planner that assumes all good possibilities and no bad possibilities will occur. DeFAULT finds much better quality plans than the traditional planner while maintaining similar speed.
|
469 |
Mathematical Reasoning and the Inductive Process: An Examination of The Law of Quadratic ReciprocityMittal, Nitish 01 June 2016 (has links)
This project investigates the development of four different proofs of the law of quadratic reciprocity, in order to study the critical reasoning process that drives discovery in mathematics. We begin with an examination of the first proof of this law given by Gauss. We then describe Gauss’ fourth proof of this law based on Gauss sums, followed by a look at Eisenstein’s geometric simplification of Gauss’ third proof. Finally, we finish with an examination of one of the modern proofs of this theorem published in 1991 by Rousseau. Through this investigation we aim to analyze the different strategies used in the development of each of these proofs, and in the process gain a better understanding of this theorem.
|
470 |
AN INTRODUCTION TO BOOLEAN ALGEBRASSchardijn, Amy 01 December 2016 (has links)
This thesis discusses the topic of Boolean algebras. In order to build intuitive understanding of the topic, research began with the investigation of Boolean algebras in the area of Abstract Algebra. The content of this initial research used a particular notation. The ideas of partially ordered sets, lattices, least upper bounds, and greatest lower bounds were used to define the structure of a Boolean algebra. From this fundamental understanding, we were able to study atoms, Boolean algebra isomorphisms, and Stone’s Representation Theorem for finite Boolean algebras. We also verified and proved many properties involving Boolean algebras and related structures.
We then expanded our study to more thoroughly developed theory. This comprehensive theory was more abstract and required the use of a different, more universal, notation. We continued examining least upper and greatest lower bounds but extended our knowledge to subalgebras and families of subsets. The notions of cardinality, cellularity, and pairwise disjoint families were investigated, defined, and then used to understand the Erdös-Tarski Theorem.
Lastly, this study concluded with the investigation of denseness and incomparability as well as normal forms and the completion of Boolean algebras.
|
Page generated in 0.0503 seconds