• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 40
  • 12
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 390
  • 390
  • 154
  • 100
  • 63
  • 54
  • 50
  • 46
  • 45
  • 42
  • 40
  • 38
  • 36
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Assessment of the prevalence of faecal coliforms and Escherichia coli o157:h7 in the final effluents of two wastewater treatment plants in Amahlathi Local Municipality of Eastern Cape Province, South Africa

Ajibade, Adefisoye Martins January 2014 (has links)
The production of final effluents that meet discharged requirements and guidelines remain a major challenge particularly in the developing world with the resultant problem of surface water pollution. This study assessed the physicochemical and microbiological qualities of two wastewater treatment works in the Eastern Cape Province of South Africa in terms of the prevalence of faecal coliforms and Escherichia coli O157:H7 over a five month period. All physicochemical and microbiological analyses were carried out using standard methods. Data were collected in triplicates and analysed statistically using IBM SPSS version 20.0. The ranges of some of the physicochemical parameters that complied with set guidelines include pH (6.7 – 7.6), TDS (107 – 171 mg/L), EC (168 – 266 μS/cm), Temperature (15 – 24oC), NO3- (0 – 8.2 mg/L), NO2- (0.14 – 0.71 mg/L) and PO4 (1.05 – 4.50 mg/L). Others including Turbidity (2.64 – 58.00 NTU), Free Cl (0.13 – 0.65 mg/L), DO (2.20 – 8.48 mg/L), BOD (0.13 – 6.85 mg/L) and COD (40 – 482 mg/L) did not comply with set guidelines. The microbiological parameters ranged 0 – 2.7 × 104 CFU/100 ml for FC and 0 – 9.3 × 103 for EHEC CFU/100 ml, an indication of non-compliance with set guidelines. Preliminary identification of 40 randomly selected presumptive enterohemorrhagic E. coli isolates by Gram’s staining and oxidase test shows 100% (all 40 selected isolates) to be Gram positive while 90% (36 randomly selected isolates) were oxidase negative. Statistical correlation between the physicochemical and the microbiological parameters were generally weak except in the case of free chlorine and DO where they showed inverse correlation with the microbiological parameters. The recovery of EHEC showed the inefficiency of the treatment processes to effectively inactivate the bacteria, and possibly other pathogenic bacteria that may be present in the treated wastewater. The assessment suggested the need for proper monitoring and a review of the treatment procedures used at these treatment works.
352

Assessment of the prevalence of virulent Eschericia coli strains in the final effluents of wastewater treatment plants in the Eastern Cape Province of South Africa

Osode, Augustina Nwabuje January 2010 (has links)
Escherichia coli (E. coli) is a common inhabitant of surface waters in the developed and developing worlds. The majority of E. coli cells present in water are not particularly pathogenic to humans; however, there are some present in small proportion that possess virulence genes that allow them to colonize the digestive tract. Pathogenic E. coli causes acute and chronic diarrheal diseases, especially among children in developing countries and in travelers in these locales. The present study, conducted between August 2007 and July 2008, investigated the prevalence and distribution of virulent E. coli strains as either free or attached cells in the final effluents of three wastewater treatment plants located in the Eastern Cape Province of South Africa and its impact on the physico-chemical quality of the receiving water body. The wastewater treatment plants are located in urban (East Bank Reclamation Works, East London), peri-urban (Dimbaza Sewage Treatment Works) and in rural area (Alice Sewage Treatment Works). The effluent quality of the treatment plants were acceptable with respect to pH (6.9-7.8), temperature (13.8-22.0 °C), dissolved oxygen (DO) (4.9-7.8 mg/L), salinity (0.12-0.17 psu), total dissolved solids (TDS) (119-162 mg/ L) and nitrite concentration (0.1-0.4 mg/l). The other xii physicochemical parameters that did not comply with regulated standards include the following: phosphate (0.1-4.0 mg/L); chemical oxygen demand (COD) (5-211 mg/L); electrical conductivity (EC) (237-325 μS/cm) and Turbidity (7.7-62.7 NTU). Results suggest that eutrophication is intensified in the vicinity of the effluent discharge points, where phosphate and nitrate were found in high concentrations. Presumptive E. coli was isolated from the effluent samples by culture-based methods and confirmed using Polymerase Chain Reaction (PCR) techniques. Antibiogram assay was also carried out using standard in vitro methods on Mueller Hinton agar. The viable counts of presumptive E. coli for the effluent samples associated with 180 μm plankton size ranged between 0 – 4.30 × 101 cfu/ml in Dimbaza, 0 – 3.88 × 101 cfu/ml in Alice and 0 – 8.00 × 101 cfu/ml in East London. In the 60 μm plankton size category E. coli densities ranged between 0 and 4.2 × 101 cfu/ml in Dimbaza, 0 and 2.13 × 101 cfu/ml in Alice and 0 and 8.75 × 101 cfu/ml in East London. Whereas in the 20 μm plankton size category presumptive E. coli density varied from 0 to 5.0 × 101 cfu/ml in Dimbaza, 0 to 3.75 × 101 cfu/ml in Alice and 0 to 9.0 × 101 cfu/ml in East London. The free-living presumptive E. coli density ranged between 0 and 3.13 × 101 cfu/ml in Dimbaza, between 0 and 8.0 × 101 cfu/ml in Alice and between 0 and 9.5 × 101 cfu/ml in East London. Molecular analysis successfully amplified target genes (fliCH7, rfbEO157, ial and aap) which are characteristic of pathogenic E. coli strains. The PCR assays using uidA-specific primer confirmed that a genetic region homologous in size to the E. coli uidA structural gene, including the regulatory region, was present in 3 of the E. coli isolates from Alice, 10 from Dimbaza and 8 from East London. Of the 3 E. coli isolates from Alice, 1 (33.3%) was positive for the fliCH7 genes and 3 was positive for rfbEO157 genes. Out of the 10 isolates from Dimbaza, 4 were xiii positive for fliCH7 genes, 6 were positive for the rfbEO157 genes and 1 was positive for the aap genes; and of the 8 isolates from East London, 1 was positive for fliCH7 genes, 2 were for the rfbEO157 genes, 6 were positive for the ial genes. Antimicrobial susceptibility profile revealed that all of the E. coli strains isolated from the effluent water samples were resistant (R) to linezolid, polymyxin B, penicillin G and sulfamethoxazole. The E. coli isolates from Dimbaza (9/10) and East London (8/8) respectively were resistant to erythromycin. All the isolates were found to be susceptible (S) to amikacin, ceftazidime, ciprofloxacin, colistin sulphate, ceftriaxone, cefotaxime, cefuroxime, ertapenem, gatifloxacin, gentamycin, imidazole, kanamycin, meropenem, moxifloxacin, neomycin, netilmicin, norfloxacin and tobramycin. The findings of this study revealed that the Alice wastewater treatment plant was the most efficient as it produced the final effluent with the least pathogenic E. coli followed by the Dimbaza wastewater treatment plant. In addition, the findings showed that the wastewater treatment plant effluents are a veritable source of pathogenic E. coli in the Eastern Cape Province watershed. We suggest that to maximize public health protection, treated wastewater effluent quality should be diligently monitored pursuant to ensuring high quality of final effluents.
353

Degradação hidrólitica dos concentrados obtidos pelo processo de flotação de efluentes da indústria láctea.

Belo, Micheline Oliveira de Menezes 31 March 2009 (has links)
Made available in DSpace on 2017-06-01T18:20:26Z (GMT). No. of bitstreams: 1 dissertacao_micheline_oliveira.pdf: 816714 bytes, checksum: 7522d63bc0d2083d9c31fe1f30d928f5 (MD5) Previous issue date: 2009-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The first step of the present work was characterizing a dairy effluent in terms microbiological and physical-chemical used to obtain a microbial consortium for its biodegradation. Microbiological characterization was performed by total heterotrophic bacteria, filamentous fungi and yeasts count according to the official methodologies. Physical-chemical characterization was accomplished by content of protein, ash, lipids, carbohydrates, pH and chemical oxygen demand (COD). Microbial consortium was obtained in batch using a bioreactor containing 1,5L of dairy effluent, at 200 rpm, 1vvm, at 28 - 30oC. Cultivations were performed in duplicate for eleven days, being applied a pulse of 10% (v/v) of effluent on the seventh day of the experiment. Cellular growth kinetics, chemical oxygen demand concentration and lipolytic activity were determined. Initial concentrations of bacteria and fungi and yeasts were equal to 3x109CFU/mL and 8x104CFU/mL, respectively. Effluent presented a COD of 64.000mgO2/L, pH 5,0 and concentrations of 5g/100mL of carbohydrates, 0,8g/100mL of protein and 0,6g/100mL of lipids. Cultivations showed an increase on the bacteria concentration, reaching 1x1013CFU/mL after eight days, while filamentous fungi and yeast concentrations were inhibited. An reduction of COD concentration in the range of 47 to 63,5% was observed after eleven days of cultivation, demonstrating the potentiality of use of microbial consortium for effluent treatment. Qualitative assays showed the presence of the enzymes lipase, amylase, protease and cellulase in the metabolic extract of the microbial consortium. However, low values of lipolytic activity were obtained as compared to the commercial enzyme, being observed that activity decreases along time. In the second step of this study, was evaluated the enzymatic hydrolysis of floated material, obtained from the column flotation of a dairy industry, using the technique of experimental design. Initially, performance was evaluated by a commercial lipase (lipolase®), being investigated the effects of agitation and enzyme concentration on hydrolysis. A statistical analysis was performed considering the significance of effects to a confidence level of 95%. Higher enzyme concentrations in the range investigated (1 to 7%) maximize the hydrolysis of oils and fats in the floated material, and to agitation levels between 100 and 150rpm. In all experiments, fatty acids were released in rates near to 100% only after 4 hours of reaction. Moreover, rates of released fatty acids were greater than 92% in all the concentration range tested. An agitation of 150rpm was used in a second experimental design, evaluating the concentration of commercial enzyme associated with a microbial consortium. The kinetic monitoring of the process showed that the addition of the consortium did not influence in a positive manner the increase the content of free fatty acids. / A primeira etapa do presente trabalho consistiu em caracterizar um efluente lácteo industrial (soro de queijo) em termos microbiológicos e físico-químicos visando à obtenção de um consórcio de microrganismos para a sua biodegradação. Foram determinadas a contagem padrão de bactérias heterotróficas e a contagem de fungos filamentosos e leveduras de acordo com as metodologias oficiais, e a caracterização físico-química foi realizada em termos do teor de proteínas, cinzas, lipídios, carboidratos, pH e demanda química de oxigênio (DQO). O consórcio microbiano foi obtido em biorreator operando em batelada e contendo 1,5L do efluente, a 200rpm, aeração de 1vvm e temperatura de 28 - 30oC. Os cultivos foram realizados em duplicata durante onze dias, sendo realizado um pulso de 150mL do efluente (10% do volume útil do biorreator) no sétimo dia do cultivo. Foram obtidas concentrações iniciais de 3x109UFC/mL e 8x104UFC/mL para contagem total de bactérias e de fungos e leveduras, respectivamente. O efluente apresentou uma DQO inicial de 64.000mgO2/L, pH 5,0, e concentrações correspondentes a 5g/100mL de carboidratos, 0,8g/100 mL de proteínas e 0,6g/100 mL de lipídios. Os cultivos do efluente no biorreator demonstraram um aumento da concentração de bactérias ao longo do tempo, atingindo 1x1013UFC/mL após oito dias, enquanto que as concentrações de fungos filamentosos e de leveduras foram inibidas. Foi observada uma redução da DQO de 47 a 63,5% após 11 dias de cultivo, demonstrando a potencialidade da utilização do consórcio microbiano no tratamento do efluente. Ensaios qualitativos demonstraram a presença das enzimas: lipase, amilase, protease e celulase no extrato metabólito do consórcio microbiano. No entanto, foram obtidos baixos valores de atividade lipolítica quando comparados com a atividade da enzima comercial, sendo observado ainda que a atividade decresce ao longo do tempo. Na segunda etapa do trabalho foi avaliada a hidrólise enzimática de material flotado, obtido a partir do processo de flotação em coluna do efluente, utilizando a técnica de planejamento de experimentos. Inicialmente, foi avaliado o desempenho de uma lipase comercial (lipolase®), sendo investigados os efeitos da agitação e da concentração de enzima sobre a hidrólise. Foi realizada a análise estatística considerando os efeitos significativos para um nível de confiança de 95%. Concentrações maiores de enzima dentro da faixa investigada (1 a 7%) maximizam a hidrólise de óleos e gorduras do material flotado, bem como para níveis de agitação entre 100 e 150rpm. Em todos os experimentos houve a liberação de ácidos graxos no meio em percentuais próximos a 100% apenas após 4 horas de reação. Vale salientar ainda que percentuais de liberação de ácidos graxos superiores a 92% foram obtidos para toda a faixa de concentração testada. Uma agitação de 150rpm foi utilizada em um segundo planejamento experimental, avaliando-se a concentração da enzima comercial associada a um consórcio microbiano, sendo verificado que a adição do consórcio não influenciou de maneira positiva o aumento do teor de ácidos graxos livres no meio.
354

The management and regulation of the beneficial use of sewage sludge as an agricultural soil amendment in Riverside County

Prinz, William Ernst 01 January 1996 (has links)
No description available.
355

Bioaccumulation of Triclocarban, Triclosan, and Methyl-triclosan in a North Texas Wastewater Treatment Plant Receiving Stream and Effects of Triclosan on Algal Lipid Synthesis.

Coogan, Melinda Ann 08 1900 (has links)
Triclosan (TCS) and triclocarban (TCC), widely used antimicrobial agents found in numerous consumer products, are incompletely removed by wastewater treatment plant (WWTP) processing. Methyl-triclosan (M-TCS) is a more lipophilic metabolite of its parent compound, TCS. The focus of this study was to quantify bioaccumulation factors (BAFs) for TCS, M-TCS, and TCC in Pecan creek, the receiving stream for the City of Denton, Texas WWTP by using field samples mostly composed of the alga Cladophora sp. and the caged snail Helisoma trivolvis as test species. Additionally, TCS effects on E. coli and Arabidopsis have been shown to reduce fatty acid biosynthesis and total lipid content by inhibiting the trans-2 enoyl- ACP reductase. The lipid synthesis pathway effects of TCS on field samples of Cladophora spp. were also investigated in this study by using [2-14C]acetate radiolabeling procedures. Preliminary results indicate high TCS concentrations are toxic to lipid biosynthesis and reduce [2-14C]acetate incorporation into total lipids. These results have led to the concern that chronic exposure of algae in receiving streams to environmentally relevant TCS concentrations might affect their nutrient value. If consumer growth is limited, trophic cascade strength may be affected and serve to limit population growth and reproduction of herbivores in these riparian systems.
356

Assessment of the Efficiency of Wastewater Treatment Facilities and the Impact of their Effluents on Surface Water and Sediment in Vhembe District, South Africa

Edokpayi, Nosa Joshua 05 1900 (has links)
PhD (Environmental Sciences) / Department of Hydrology and Water Resources / See the attached abstract below
357

Exploring Spatial Optimization Techniques for the Placement of Flow Monitors Utilized in RDII Studies

Skehan, Christopher A. 31 August 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The aging infrastructure of a wastewater collection system can leak, capture ground water, and capture precipitation runoff. These are some of the most common problems in many of today’s US collection systems and are often collectively referred to as Rain Derived Inflow and Infiltration (RDII or I/I). The goal of this study is to investigate such optimized methods and their potential to improve flow monitor placement, especially for RDII studies, and to improve upon Stevens (2005) methodology. This project adopts a methodology from the “facility location problem”, a branch of operations research and graph theory. Solutions to a facility location problem will be adapted and utilized within a transportation GIS application to determine optimal placement.
358

Analysis of Heavy Metals and Persistent Organic Pollutants in Sewage Sludge from Thohoyandou Wastewater Treatment Plant and transfer to Vegetables.

Akinsaya, Nurudeen Akinwale 18 May 2018 (has links)
MENVSC / Department of Hydrology and Water Resources / Sewage sludge (biosolids) from wastewater treatment plants (WWTPs) has been widely used as a soil improver in Europe, United States of America and some developing countries including South Africa. It has its benefits for farmers as a good source of organic matter and minerals, however, sludge after treatment still contains pathogenic organisms, heavy metals and persistent organic pollutants (POPs). The POP and heavy metal contaminants that accumulate in sludge may transfer through the food chain and cause adverse effects on human beings. In this study, a field experiment was carried out on farmland fertilized with sewage sludge from a wastewater treatment plant (WWTP) that vasically receives domestic wastewater and storm water. Vegetable spinach (Spinacia oleracea) was used for this study and was planted on a farmland under controlled conditions. Ten ridges each of dimensions 20 m × 0.3 m was made and dry sludge weights of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 kg were applied as manure on each of the ridges, respectively. Representative samples of sludge and soil were taken for analysis of heavy metals and POPs. At maturity, in twelve weeks, the root and leave samples of the vegetable were taken from all the ridges including the control. The soil, sludge, and vegetable samples were analyzed for total heavy metal content (Cd, Cr, Cu, Ni, Pb, Co, Zn, Al, Fe, Mn), speciated heavy metal content and POP (PAH, PCB). Soil and sludge samples were also analyzed for total organic content, pH, cation exchange capacity (CEC), conductivity and alkalinity. The analysis for total heavy metals and speciated heavy metal content was carried out using inductively coupled plasma optical emission spectrophotometer (ICP-OES), and CEC analysis was carried out using atomic absorption spectrophotometer (AAS). A two-dimensional gas chromatograph with time of flight mass spectrometry detector (GC X GC TOFMS) was used for POP measurements. pH measurement was made using a pH meter and conductivity measurement using a conductivity meter. Alkalinity and total organic content analysis was performed using titrimetric apparatus. The highest total heavy metal concentration of 378.9 mg / kg was recorded in Fe metal in soil and Leaf sample while the lowest total metal concentration of 0.0003 mg / kg was in Cu metal in root sample. The highest heavy metal concentration of 1002 mg / kg in speciated forms was in Mn metal in F1 fraction and the lowest of 0.0004 mg / kg was in Cd metal in F5 fraction. PAHs were only found in soil samples and their concentrations ranged from 2.53 mg / kg to 146.5 mg / kg. There were no PCB detected in all the samples analysed. The results indicated that the trace metals concentrations found in the exchangeable fraction were higher than those observed in any of the preceding extractions except in the case of Cd, Cr, Fe and Pb where Fe-Mn oxide and organic matter fractions predominated and were closely followed by exchangeable fraction.
359

Analyses of the impacts of bacteriological seepage emanating from pig farming on the natural environment

Mofokeng, Dikonketso Shirley-may 03 1900 (has links)
Modern pig farming production may over burden the environment with organic substances, exposure of bacterial pathogens and introduction of resistance gene. This may be caused by the pig’s droppings, lack of seepage management or accidental spillage of seepage which may impact on the environment and its physicochemical parameters. The objective of this study is to determine and assess the level of bacteriological pollution emanating from the pig farm and their impact on the physicochemical parameters of soil and water as well as to identify the presence of antibiotic resistance gene of these prevailing bacteria. Soil and water samples were collected monthly for a period of six months (March- August 2013). Samples were collected at pig enclosures, soil 20 m and 100 m away from pig enclosures, constructed wetland used for treating pig farm wastewater, soil 20m and 100 m away from constructed wetland. Procedure followed for analysing soil and water samples includes physicochemical analyses, viable cell counts of 10-1 to 10-8 dilutions, identification of bacteria using API 20E test kit, antibiotic susceptibility analyses, and identification of resistance gene using molecular procedures. The media that were used for viable cell counts were, Nutrient agar, MacConkey Agar, Xylose Lysine Deoxycholate agar (XLD agar), and Eosin Methylene Blue (EMB). Physicochemical parameters of water showed unacceptable high levels of analysed parameters for BOD (163 mg/L to 3350 mg/L), TDS (0.77 g/L to 6.48 mg/L), COD (210 mg/L to 9400 mg/L), NO3 (55 mg/L to 1680 mg/L), NO2 (37.5 mg/L to 2730 mg/L), and PO43− (50 mg/L to 1427 mg/L) were higher than the maximum permissible limits set by Department of Water Affairs and Forestry (DWAF). For soil samples TDS (0.01g/L to 0.88 g/L), COD (40 mg/L to 304 mg/L), NO3 (32.5 mg/L to 475 mg/L), and NO2 (7.35 mg/L to 255 mg/L) and PO43- (32.5 mg/L to 475 mg/L ) were observed to be higher than recommended limits set by Federal Ministry for the Environmental (FME). The viable cells in soil samples 30cm depth ranged from 0 cfu/mL to 2.44 x 1010cfu/mL, in soil 5cm depth ranged from 1.00 x 101 cfu/mL to 1.91 x 1010 cfu/mL, and in water samples viable cells ranged from 5.00 x 101 to 5.05 x 109. Pseudomonas luteola (Ps. luteola), Escherichia vulneris (E. vulneris), Salmonella choleraesuis spp arizonae, Escherichia coli 1(E. coli 1), Enterobacter cloacae, Pseudomonas flourescens/putida (Ps. flourescens/putida), Enterobacter aerogenes, Serratia ordoriferal, Pasteurella pneumotropica, Ochrobactrum antropi, Proteus vulgaris group, Proteus vulgaris, Salmonella spp, Aeromonas Hydrophila/caviae/sobria1, Proteus Mirabillis, Vibrio fluvials, Rahnella aquatillis, Pseudomonas aeruginosa (Ps. aeruginosa), Burkholderia Cepacia, Stenotrophomonas maltophilia (St. maltophilia), Shwenella putrefaciens, Klebsiela pneumonia, Cedecea davisa, Serratia liquefaciens, Serratia plymuthica, Enterobacter sakaziki, Citrobacter braakii, Enterobacter amnigenus 2, Yersinia pestis, Serratia ficaria, Enterobacter gergoriae, Enterobacter amnigenus 1, Serratia marcescens, Raoutella terrigena, Hafnia alvei 1, Providencia rettgeri, and Pantoa were isolated from soil and water samples from the pig farm. Isolates were highly resistant to Penicillin G, Sulphamethaxazole, Vancomycin, Tilmocozin, Oxytetracycline, Spectinomycin, Lincomycin, and Trimethoprim. The most resistance genes detected in most isolates were aa (6’)-le-aph (2”)-la, aph (2”)-lb, aph (3”)-llla, Van A, Van B, Otr A and Otr B. Pig farm seepage is causing bacterial pollution which is impacting negatively on the natural environment in the vicinity of pig farm by introducing bacterial pathogens that have an antibiotic resistance gene and is increasing the physicochemical parameters for soil and water in the natural environment at the pig farm. It is therefore recommended that pig farms should consider the need to implement appropriate regulatory agencies that may include the regular monitoring of the qualities of final effluents from waste water treatment facilities. In addition there is a need to limit soil pollution in order to safe guard the natural environment in the vicinity of pig farm from bacteriological pollution and introduction of antibiotic resistance gene. It is also recommended that more advanced technologies should be introduced that will assist pig farms to manages the seepage properly. / Environmental Sciences / M. Sc. (Environmental Sciences)
360

Recovery of the Fish Population of a Municipal Wastewater Dominated, North Texas Creek After a Major Chlorine Disturbance

Maschmann, Gerald F. 08 1900 (has links)
This study evaluated the effects of a major chlorine disturbance on fish communities in Pecan creek by the City of Denton's Pecan Creek Water Reclamation Plant. Fish communities in Pecan Creek were sampled using a depletion methodology during February, April, July, and November, 1999. February and April sampling events showed that the fish communities were severely impacted by the chlorine. Sampling during July and November showed fish communities recovered in Pecan Creek. The first-twenty minutes of shocking and seining data were analyzed to mirror an equal effort methodology. This methodology was compared to the depletion methodology to see if the equal effort methodology could adequately monitor the recovery of Pecan Creek after the chlorine disturbance. It was determined that the equal effort methodology was capable of monitoring the recovery of Pecan Creek, but could not accurately represent the fisheries community as well as the depletion method. These data using the twenty-minute study were compared to a previous study. Results of this study were similar to those found in a previous study, although fish communities were more severely impacted and took longer to recover.

Page generated in 0.0794 seconds