• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 32
  • 22
  • 12
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 271
  • 271
  • 271
  • 66
  • 66
  • 51
  • 37
  • 36
  • 36
  • 35
  • 33
  • 32
  • 28
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Coupled Thermal and Electrical Transport in Unconventional Metals for Applications in Solid-State Cooling

Saini, Abhishek 23 August 2022 (has links)
No description available.
92

Seismic Response and Analysis of Multiple Frame Bridges Using Superelastic Shape Memory Alloys

Andrawes, Bassem Onsi 14 April 2005 (has links)
The feasibility of using superelastic shape memory alloys in the retrofit of multiple frame bridges is investigated. First, three shape memory alloy constitutive models with various levels of complexity are compared in order to determine the significance of including subloops and cyclic loading effects on the structural response. The results show that the structural response is more sensitive to the shape memory alloys strength degradation and residual deformation than the sublooping behavior. Next, two parametric studies are conducted to explore the sensitivity of hinge opening to the mechanical behavior of the superelastic shape memory alloys. The first study is focused on the hysteretic properties of the alloy that could vary depending on the chemical composition or the manufacturing process of the alloy, while the second study targets the changes in the mechanical behavior of shape memory alloys resulting from the variability in the ambient temperature. The results show that the hysteretic behavior of shape memory alloys has only a slight effect on the bridge hinge opening as long as the recentering property is maintained. A detailed study on the effect of temperature shows that a reduction in the ambient temperature tends to negatively affect the hinge opening while an increase in temperature results in a slight improvement. Next, a parametric study is conducted to examine the effectiveness of shape memory alloy retrofit devices in limiting hinge openings in bridges with various properties. In addition, a comparison is made with other devices such as conventional steel restrainers, metallic dampers, and viscoelastic solid dampers. The results illustrate that superelastic shape memory alloys are superior in their effectiveness compared to other devices in the case of bridges with moderate period ratios and high level of ductility, especially when subjected to strong earthquakes.
93

Composition Analysis Of NiTi Thin Films Sputtered From A Mosaic Target : Synthesis And Simulation

Vincent, Abhilash 11 1900 (has links) (PDF)
No description available.
94

Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting

Saedi, Soheil 01 January 2017 (has links)
Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications. The SLM process parameters such as laser power, scanning speed, spacing, and strategy used during the fabrication are determinant factors in composition, microstructural features and functional properties of the SLM NiTi alloy. Therefore, a comprehensive and systematic study has been conducted over Ni50.8 Ti49.2 (at%) alloy to understand the influence of each parameter individually. It was found that a sharp [001] texture is formed as a result of SLM fabrication which leads to improvements in the superelastic response of the alloy. It was perceived that transformation temperatures, microstructure, hardness, the intensity of formed texture and the correlated thermo-mechanical response are changed substantially with alteration of each parameter. The provided knowledge will allow choosing optimized parameters for tailoring the functional features of SLM fabricated NiTi alloys. Without going through any heat treatments, 5.77% superelasticity with more than 95% recovery ratio was obtained in as-fabricated condition only with the selection of right process parameters. Additionally, thermal treatments can be utilized to form precipitates in Ni-rich SLM NiTi alloys fabricated by low energy density. Precipitation could significantly alter the matrix composition, transformation temperatures and strain, critical stress for transformation, and shape memory response of the alloy. Therefore, a systematic aging study has been performed to reveal the effects of aging time and temperature. It was found that although SLM fabricated samples show lower strength than the initial ingot, heat treatments can be employed to make significant improvements in shape memory response of SLM NiTi. Up to 5.5% superelastic response and perfect shape memory effect at stress levels up to 500 MPa was observed in solutionized Ni-rich SLM NiTi after 18h aging at 350ºC. For practical application, transformation temperatures were even adjusted without solution annealing and superelastic response of 5.5% was achieved at room temperature for 600C-1.5hr aged Ni-rich SLM NiTi. The effect of porosity on strength and cyclic response of porous SLM Ni50.1 Ti49.9 (at%) were investigated for potential bone implant applications. It is shown that mechanical properties of samples such as elastic modulus, yield strength, and ductility of samples are highly porosity level and pore structure dependent. It is shown that it is feasible to decrease Young’s modulus of the SLM NiTi up to 86% by adding porosity to reduce the mismatch with that of a bone and still retain the shape memory response of SLM fabricated NiTi. The shape memory effect, as well as superelastic response of porous SLM Ni50.8Ti49.2,were also investigated at body temperature. 32 and 45% porous samples with similar behaviors, recovered 3.5% of 4% deformation at first cycle. The stabilized superelastic response was obtained after clicking experiments.
95

Probabilistic Seismic Demand Assessment of Steel Frames with Shape Memory Alloy Connections

Taftali, Berk 09 July 2007 (has links)
Shape Memory Alloys (SMAs) exhibit the ability to undergo large deformations but can recover permanent strains via heating (shape memory effect) or when stress is removed (superelastic effect). This study evaluates the comparative seismic performance of steel moment resisting frames (SMRFs) with innovative beam-to-column connections that use SMA bars as connecting elements. The performance evaluation studies are based on two types of SMA beam-to-column connections: (1) superelastic SMA connections with recentering capability; (2) martensitic SMA connections with high energy dissipation capacity. Fiber models for these SMA connections are implemented in the OpenSees finite element framework, and are verified against data from full-scale experimental tests that were performed on a prototype SMA connection in previous research at Georgia Tech. Three- and a nine-story model buildings with partially-restrained (PR) moment frames are selected from the SAC Phase II Project as case studies. Non-linear time history analyses on these model buildings, with and without SMA connections, are conducted using suites of ground acceleration records from the SAC Phase II project that represent different seismic hazard levels. Several SMA connections are designed for each structure, and their effect on peak and residual inter-story drift angles, connection rotations, and normalized dissipated hysteretic energy demands are investigated to determine the most suitable design. Finally, the seismic demands on the model buildings with conventional PR and selected SMA connections are evaluated in a probabilistic framework. The resulting seismic demand relationships are used to assess the effectiveness of the SMA connections in enhancing the building performance over a range of demand levels. The results of this performance evaluation show that the SMA connections are most effective in controlling structural response under high levels of seismic intensity leading to large deformation demands. In particular, the energy dissipating SMA connections are found to be effective in reducing maximum deformation demands, while the recentering SMA connections are more suitable for controlling residual deformations in the structure.
96

Influence of High Strain Rate Compression on Microstructure and Phase Transformation of NiTi Shape Memory Alloys

Qiu, Ying 05 1900 (has links)
Since NiTi shape memory alloy (SMA) was discovered in the early 1960s, great progress has been made in understanding the properties and mechanisms of NiTi SMA and in developing associated products. For several decades, most of the scientific research and industrial interests on NiTi SMA has focused on its superelastic applications in the biomedical field and shape memory based “smart” devices, which involves the low strain rate (around 0.001 s^-1) response of NiTi SMA. Due to either stress-induced martensite phase transformation or stress induced martensite variant reorientation under the applied load, NiTi SMA has exhibited a high damping capacity in both austenitic and martensitic phase. Recently, there has been an increasing interest in exploitation of the high damping capacity of NiTi SMA to develop high strain rate related applications such as seismic damping elements and energy absorbing devices. However, a systematic study on the influence of strain, strain rate and temperature on the mechanical properties, phase transformation, microstructure and crystal structure is still limited, which leads to the difficulties in the design of products being subjected to high strain rate loading conditions. The four main objectives of the current research are: (1) achieve the single loading and the control of strain, constant strain rate and temperature in high strain rate compression tests of NiTi SMA specimens using Kolsky (split Hopkinson) compression bar; (2) explore the high strain rate compressive responses of NiTi SMA specimens as a function of strain (1.4%, 1.8%, 3.0%, 4.8%, and 9.6%), strain rate (400, 800 and 1200 s^-1), and temperature (room temperature (294 K) and 373 K); (3) characterize and compare the microstructure, phase transformation and crystal structure of NiTi SMAs before and after high strain rate compression; and (4) correlate high strain rate deformation with the changes of microstructure, phase transformation characteristics and crystal structure. Based on the results from this study, it was found that: (1) the compressive stress strain curves of martensitic NiTi SMAs under quasi-static loading conditions are different from those under high strain rate loading conditions, where higher strain hardening was observed; (2) the critical stress and stress plateau of martensitic NiTi SMAs are sensitive to the strain rate and temperature, especially at 373K, which results from the interplay between strain hardening and thermal softening; (3) the microstructure of martensitic NiTi SMA has changed with increasing strain rate at room temperature (294 K), resulting in the reduction in the area of ordered martensite region, while that area increases after deformation at elevated temperature (373K); (4) the phase transformation characteristic temperatures are more sensitive to deformation strain than strain rate; (5) the preferred crystal plane of martensitic NiTi SMA has changed from (11 ̅1)M before compression to (111)M after compression at room temperature (294 K), while the preferred plane remains exactly the same for martensitic NiTi SMA before and after compression at 373 K. Lastly, dynamic recovery and recrystallization are also observed after deformation of martensitic NiTi SMA at 373K.
97

Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys

Carl, Matthew A 05 1900 (has links)
NiTi-based shape memory alloys (SMAs) offer a good combination of high-strength, ductility, corrosion resistance, and biocompatibility that has served them well and attracted the attention of many researchers and industries. The alloys unique thermo-mechanical ability to recover their initial shape after relatively large deformations by heating or upon unloading due to a characteristic reversible phase transformation makes them useful as damping devices, solid state actuators, couplings, etc. However, there is a need to increase the temperature of the characteristic phase transformation above 150 °C, especially in the aerospace industry where high temperatures are often seen. Prior researchers have shown that adding ternary elements (Pt, Pd, Au, Hf and Zr) to NiTi can increase transformation temperatures but most of these additions are extremely expensive, creating a need to produce cost-effective high temperature shape memory alloys (HTSMAs). Thus, the main objective of this research is to examine the relatively unstudied NiTiZr system for the ability to produce a cost effective and formable HTSMA. Transformation temperatures, precipitation paths, processability, and high-temperature oxidation are examined, specifically using high energy X-ray Diffraction (XRD) measurements, in NiTi-20 at.% Zr. This is followed by an in situ XRD study of the phase growth kinetics of the favorable H-phase nano precipitates, formed in NiTiHf and NiTiZr HTSMAs, based on prior thermo-mechanical processing in a commercial NiTi-15 at.% Hf HTSMA to examine the final processing methods and aging characteristics. Through this research, knowledge of the precipitation paths in NiTiZr and NiTiHf HTSMAs is extended and methods for characterization of phases and strains using high energy XRD are elucidated for future work in the field.
98

The formation of microstructure in shape-memory alloys

Koumatos, Konstantinos January 2012 (has links)
The application of techniques from nonlinear analysis to materials science has seen great developments in the recent years and it has really been a driving force for substantial mathematical research in the area of partial differential equations and the multi-dimensional calculus of variations. This thesis has been motivated by two recent and remarkable experimental observations of H. Seiner in shape-memory alloys which we attempt to interpret mathematically. Much of the work is original and has given rise to deep problems in the calculus of variations. Firstly, we study the formation of non-classical austenite-martensite interfaces. Ball & Carstensen (1997, 1999) theoretically investigated the possibility of the occurrence of such interfaces and studied the cubic-to-tetragonal case extensively. In this thesis, we present an analysis of non-classical austenite-martensite interfaces recently observed by Seiner et al.~in a single crystal of a CuAlNi shape-memory alloy, undergoing a cubic-to-orthorhombic transition. We show that these can be described by the general nonlinear elasticity model and we make some predictions regarding the admissible volume fractions of the martensitic variants involved, as well as the habit plane normals. Interestingly, in the above experimental observations, the interface between the austenite and the martensitic configuration is never exactly planar, but rather slightly curved, resulting from the pattern of martensite not being exactly homogeneous. However, it is not clear how one can reconstruct the inhomogeneous configuration as a stress-free microstructure and, instead, a theoretical approach is followed. In this approach, a general method is provided for the construction of a compatible curved austenite-martensite interface and, by exploiting the structure of quasiconvex hulls, the existence of curved interfaces is shown in two and three dimensions. As far as the author is aware of, this is the first construction of such a curved austenite-martensite interface. Secondly, we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy consisting of a single variant of stabilized 2H martensite. The nucleation process is induced by localized heating and it is observed that, regardless of where the localized heating is applied, the nucleation points are always located at one of the corners of the sample - a rectangular parallelepiped in the austenite. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure can lower the energy. The result for the interior, faces and edges is established by showing that the free-energy function satisfies a set of quasiconvexity conditions at the stabilized variant throughout the specimen, provided this is suitably cut. The proofs of quasiconvexity are based on a rigidity argument and are specific to the change of symmetry in the phase transformation. To the best of the author's knowledge, quasiconvexity conditions at edges and corners have not been considered before.
99

Thermomechanical characterization of NiTiNOL and NiTiNOL based structures using ACES methodology

Mizar, Shivananda Pai 16 February 2006 (has links)
Recent advances in materials engineering have given rise to a new class of materials known as active materials. These materials when used appropriately can aid in development of smart structural systems. Smart structural systems are adaptive in nature and can be utilized in applications that are subject to time varying loads such as aircraft wings, structures exposed to earthquakes, electrical interconnections, biomedical applications, and many more. Materials such as piezoelectric crystals, electrorheological fluids, and shape memory alloys (SMAs) constitute some of the active materials that have the innate ability to response to a load by either changing phase (e.g., liquid to solid), and recovering deformation. Active materials when combined with conventional materials (passive materials) such as polymers, stainless steel, and aluminum, can result in the development of smart structural systems (SSS). This Dissertation focuses on characterization of SMAs and structures that incorporate SMAs. This characterization is based on a hybrid analytical, computational, and experimental solutions (ACES) methodology. SMAs have a unique ability to recover extensive amounts of deformation (up to 8% strain). NiTiNOL (NOL: Naval Ordinance Lab) is the most commonly used commercially available SMA and is used in this Dissertation. NiTiNOL undergoes a solid-solid phase transformation from a low temperature phase (Martensite) to a high temperature phase (Austenite). This phase transformation is complete at a critical temperature known as the transformation temperature (TT). The low temperature phase is softer than the high temperature phase (Martensite is four times softer than Austenite). In this Dissertation, use of NiTiNOL in representative engineering applications is investigated. Today, the NiTiNOL is either in ribbon form (rectangular in cross-section) or thin sheets. In this Dissertation, NiTiNOL is embedded in parent materials, and the effect of incorporating the SMA on the dynamic behavior of the composite are studied. In addition, dynamics of thin sheet SMA is also investigated. The characterization is conducted using state-of-the- art (SOTA) ACES methodology. The ACES methodology facilitates obtaining an optimal solution that may otherwise be difficult, or even impossible, to obtain using only either an analytical, or a computational, or an experimental solution alone. For analytical solutions energy based methods are used. For computational solutions finite element method (FEM) are used. For experimental solutions time-average optoelectronic holography (OEH) and stroboscopic interferometry (SI) are used. The major contributions of this Dissertation are: 1. Temperature dependent material properties (e.g., modulus of elasticity) of NiTiNOL based on OEH measurements. 2. Thermomechanical response of representative composite materials that incorporate NiTiNOL“fibers". The Dissertation focuses on thermomechanical characterization of NiTiNOL and representative structures based on NiTiNOL; this type of an evaluation is essential in gainfully employing these materials in engineering designs.
100

PROCESS-INDUCED SURFACE INTEGRITY IN MACHINING OF NITI SHAPE MEMORY ALLOYS

Kaynak, Yusuf 01 January 2013 (has links)
NiTi alloys have been the focus of Shape Memory Alloys (SMA) research and applications due their excellent ductility and shape memory properties, and these alloys have been extensively used in automotive, aerospace, and in biomedical applications. The effects of machining on the surface integrity and the corresponding material and mechanical properties of alloys can be best studied by utilizing NiTi alloys as workpiece material since their physical and mechanical properties are highly microstructure dependent. However, due to very poor machining performance of NiTi shape memory alloys, no comprehensive or systematic investigation on this topic has been conducted by researchers as yet. The current study makes a substantial and unique contribution to this area by making the first and significant contribution to studies on machining performance of NiTi shape memory alloys, and by achieving improved surface integrity and machining performance using cryogenic applications, which give significant reductions of tool-wear, cutting forces, and surface roughness. The influence of machining process conditions, including dry, MQL, preheated, cryogenic machining, and the effects of prefroze cryo machining on surface integrity characteristics such as microhardness, phase transformation, phase transformation temperature, depth of plastically deformed layer have been examined extensively, and unique findings have been obtained. The effects of machining process conditions, in particular preheated and cryogenic machining conditions, on thermo-mechanical and shape memory characteristics were identified through thermal cycling and stress-strain tests. For the first time, orthogonal cutting of NiTi shape memory alloys has been carried out in this study to investigate surface integrity comprehensively. Surface integrity and machining performance are compared for dry and prefroze cryogenic cooling conditions under a wide range of cutting speeds. Stress-induced martensitic phase transformation and deformation twinning were found in prefroze cryogenic and dry cutting conditions respectively. The existing microstructure-based constitutive models were used and modified to predict machining-induced phase transformation and resulting volume fraction. The modified model was implemented in commercial FEM software (DEFORM-2D) as a customized user subroutine. The obtained results from simulation and orthogonal cutting tests were compared considering martensitic volume fraction during cutting with various cutting speeds. The model captured the experimental trend of volume fraction induced by various cutting speeds and process variables. Overall, FEM simulation of cutting process of NiTi was successfully presented.

Page generated in 0.0496 seconds