Spelling suggestions: "subject:"shape optimization"" "subject:"chape optimization""
51 |
Stability-constrained Aerodynamic Shape Optimization with Applications to Flying WingsMader, Charles 30 August 2012 (has links)
A set of techniques is developed that allows the incorporation of flight dynamics metrics
as an additional discipline in a high-fidelity aerodynamic optimization. Specifically, techniques for including static stability constraints and handling qualities constraints in a high-fidelity aerodynamic optimization are demonstrated. These constraints are developed from stability
derivative information calculated using high-fidelity computational fluid dynamics (CFD). Two techniques are explored for computing the stability derivatives from CFD. One technique uses an automatic differentiation adjoint technique (ADjoint) to efficiently and accurately compute a
full set of static and dynamic stability derivatives from a single steady solution. The other technique uses a linear regression method to compute the stability derivatives from a quasi-unsteady time-spectral CFD solution, allowing for the computation of static, dynamic and transient stability
derivatives. Based on the characteristics of the two methods, the time-spectral technique
is selected for further development, incorporated into an optimization framework, and used to conduct stability-constrained aerodynamic optimization. This stability-constrained optimization
framework is then used to conduct an optimization study of a flying wing configuration. This study shows that stability constraints have a significant impact on the optimal design of flying wings and that, while static stability constraints can often be satisfied by modifying the
airfoil profiles of the wing, dynamic stability constraints can require a significant change in the planform of the aircraft in order for the constraints to be satisfied.
|
52 |
Design Of A Computer Interface For Automatic Finite Element Analysis Of An Excavator BoomYener, Mehmet 01 May 2005 (has links) (PDF)
The aim of this study is to design a computer interface, which links the user to commercial Finite Element Analysis (FEA) program, MSC.Marc-Mentat to make automatic FE analysis of an excavator boom by using DELPHI as platform. Parametrization of boom geometry is done to add some flexibility to interface called OPTIBOOM. Parametric FE analysis of a boom shortens the design stages and helps to find the optimum design in terms of stresses and mass.
|
53 |
Existence and regularity results for some shape optimization problems / Résultats d'existence et régularité pour des problèmes d'optimisation de formeVelichkov, Bozhidar 08 November 2013 (has links)
Les problèmes d'optimisation de forme sont présents naturellement en physique, ingénierie, biologie, etc. Ils visent à répondre à différentes questions telles que:-A quoi une aile d'avion parfaite pourrait ressembler?-Comment faire pour réduire la résistance d'un objet en mouvement dans un gaz ou un fluide?-Comment construire une structure élastique de rigidité maximale?-Quel est le comportement d'un système de cellules en interaction?Pour des exemples précis et autres applications de l'optimisation de forme nous renvoyons à [20] et [69]. Ici, nous traitons les aspects mathématiques théoriques de l'optimisation de forme, concernant l'existence d'ensembles optimaux ainsi que leur régularité. Dans toutes les situations que l'on considère, la fonctionnelle dépend de la solution d'une certaine équation aux dérivées partielles posée sur la forme inconnue. Nous allons parfois se référer à cette fonction comme une fonction d'état.Les fonctions d'état les plus simples, mais qui apparaissent dans beaucoup de problèmes, sont données par les solutions des équations -Δw = 1 et -Δu = λu,qui sont liées à la torsion et aux modes d'oscillation d'un objet donné. Notre étude se concentrera principalement sur ces fonctionnelles de formes, impliquant la torsion et le spectre.[20] D. Bucur, G. Buttazzo: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations 65, Birkhauser Verlag, Basel (2005).[69] A. Henrot, M. Pierre: Variation et optimisation de formes: une analyse geometrique. Springer-Berlag, Berlin, 2005. / The shape optimization problems naturally appear in engineering and biology. They aim to answer questions as:-What a perfect wing may look like?-How to minimize the resistance of a moving object in a gas or a fluid?-How to build a rod of maximal rigidity?-What is the behaviour of a system of cells?The shape optimization appears also in physics, mainly in electrodynamics and in the systems presenting both classical and quantum mechanics behaviour. For explicit examples and furtheraccount on the applications of the shape optimization we refer to the books [20] and [69]. Here we deal with the theoretical mathematical aspects of the shape optimization, concerning existence of optimal sets and their regularity. In all the practical situations above, the shape of the object in study is determined by a functional depending on the solution of a given partial differential equation. We will sometimes refer to this function as a state function.The simplest state functions are provided by solutions of the equations−∆w = 1 and −∆u = λu,which usually represent the torsion rigidity and the oscillation modes of a given object. Thus our study will be concentrated mainly on the situations, in which these state functions appear,i.e. when the optimality is intended with respect to energy and spectral functionals. [20] D. Bucur, G. Buttazzo: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations 65, Birkhauser Verlag, Basel (2005).[69] A. Henrot, M. Pierre: Variation et optimisation de formes: une analyse geometrique. Springer-Berlag, Berlin, 2005.
|
54 |
Enhancing the Structural Performance of Additively Manufactured ObjectsUlu, Erva 01 May 2018 (has links)
The ability to accurately quantify the performance an additively manufactured (AM) product is important for a widespread industry adoption of AM as the design is required to: (1) satisfy geometrical constraints, (2) satisfy structural constraints dictated by its intended function, and (3) be cost effective compared to traditional manufacturing methods. Optimization techniques offer design aids in creating cost-effective structures that meet the prescribed structural objectives. The fundamental problem in existing approaches lies in the difficulty to quantify the structural performance as each unique design leads to a new set of analyses to determine the structural robustness and such analyses can be very costly due to the complexity of in-use forces experienced by the structure. This work develops computationally tractable methods tailored to maximize the structural performance of AM products. A geometry preserving build orientation optimization method as well as data-driven shape optimization approaches to structural design are presented. Proposed methods greatly enhance the value of AM technology by taking advantage of the design space enabled by it for a broad class of problems involving complex in-use loads.
|
55 |
Optimisation de formes paramétriques en grande dimensionFroment, Pierre 24 April 2014 (has links)
Les méthodes actuelles d’optimisation de formes permettent des gains importants vis-à-vis des fonctions à optimiser. Elles sont largement utilisées par les industriels, notamment dans l’automobile comme chez Renault. Parmi ces approches, l’optimisation de formes paramétriques permet d’obtenir rapidement une géométrie optimale sous réserve que l’espace de conception soit assez restreint pour pouvoir être parcouru en un temps de simulation raisonnable. Ce manuscrit présente deux méthodes d’optimisation de formes paramétriques en grande dimension pour des applications nécessitant des coûts de calculs importants, par exemple en mécanique des fluides. Une manière originale de reconstruire un modèle CAO paramétré à partir d’une surface morte est présentée au préalable. Nous proposons une approche pour identifier les zones interdites de l’espace de conception ainsi que leurs gestions dans une boucle d’optimisation par plans d’expériences. La première méthode s’appuie sur des techniques statistiques pour lever le verrou du nombre de degrés de liberté et utilise une optimisation à deux niveaux de fidélité pour minimiser les temps de calcul. Cette méthode en rupture avec le processus industriel habituel a été appliquée pour optimiser le coefficient de trainée aérodynamique d’un véhicule. La seconde méthode se base sur l’exploitation des gradients fournis par les solveurs adjoints, c’est-à-dire sur les sensibilités du critère (comme l’uniformité d’un écoulement par exemple) par rapport aux degrés de liberté de l’optimisation. Cette méthode innovante et en rupture avec les approches classiques permet de lever très naturellement le verrou du nombre de paramètres. Cependant, les gradients fournis par les logiciels ne sont pas donnés par rapport aux paramètres CAO mais par rapport aux nœuds du maillage. Nous proposons donc une façon d’étendre ces gradients jusqu’aux paramètres CAO. Des exemples académiques ont permis de montrer la pertinence et la validité de notre approche. / Current design loops for shape optimizations allow significant improvements in relation to the functions that need to be optimized. They are widely used in industry, particularly in the car industry like Renault. Among these approaches, parametric shape optimization allows rapid enhancement of the shape, on the condition that the design space is confined enough in order to be explored within a reasonable computational time. This Thesis introduces two CAD-based large-scale shape optimization methods for products requiring significant computational cost, for example in fluid mechanics. An original way to create a parameterized CAD model developed from a dead geometry is presented first. We propose an approach to identify the restricted areas of the design space and their managements in an optimization loop that uses a design of experiments. The first method is based on statistical techniques to circumvent the difficulties of large-scale optimizations and uses a two-level multi-fidelity modelling approach to minimize the computational time. This method, breaking away from the usual industrial process, was applied to optimize the aerodynamic drag coefficient of a car body. The second method is based on the gradients provided by adjoint solvers, that is to say on the sensitivity of the cost function (such as the uniformity deviation for example) with respect to the design points or displacement boundaries. This innovative method breaking away from classical approaches naturally gets over the number of degrees of freedom. However, the sensitivities provided by softwares are not computed with respect to CAD parameters but with respect to the coordinates of the vertices of the surface mesh. Thus, we propose a way to extend these gradients to CAD parameters. Academic test cases have proved the efficiency and accuracy of our method.
|
56 |
Paramétrage de formes surfaciques pour l'optimisationDu Cauzé De Nazelle, Paul 27 March 2013 (has links)
Afin d’améliorer la qualité des solutions proposées par l’optimisation dans les processus de conception, il est important de se donner des outils permettant à l’optimiseur de parcourir l’espace de conception le plus largement possible. L’objet de cette Thèse est d’analyser différentes méthodes de paramétrage de formes surfaciques d’une automobile en vue de proposer à Renault un processus d’optimisation efficace. Trois méthodes sont analysées dans cette Thèse. Les deux premières sont issues de l’existant, et proposent de mélanger des formes, afin de créer de la diversité. Ainsi, on maximise l’exploration de l’espace de conception, tout en limitant l’effort de paramétrage des CAO. On montre qu’elles ont un fort potentiel, mais impliquent l’utilisation de méthodes d’optimisation difficiles à mettre en œuvre aujourd’hui. La troisième méthode étudiée consiste à exploiter la formulation de Koiter des équations de coques, qui intègre paramètres de forme et mécanique, et de l’utiliser pour faire de l’optimisation de forme sur critères mécaniques. Cette méthode a par ailleurs pour avantage de permettre le calcul des gradients. D’autre part, nous montrons qu’il est possible d’utiliser les points de contrôles de carreaux de Bézier comme paramètres d’optimisation, et ainsi, de limiter au strict nécessaire le nombre de variables du problème d’optimisation, tout en permettant une large exploration de l’espace de conception. Cependant, cette méthode est non-standard dans l’industrie et implique des développements spécifiques, qui ont été réalisés dans le cadre de cette Thèse. Enfin, nous mettons en place dans cette Thèse les éléments d’un processus d’optimisation de forme surfacique. / To improve optimized solutions quality in the design process, it is important to provide the optimizer tools to navigate the design space as much as possible. The purpose of this thesis is to analyze different parametrization methods for automotive surface shapes, in order to offer Renault an efficient optimization process. Three methods are analyzed in this thesis. The first two are closed to the existing ones, and propose to blend shapes to create diversity. Thus, we are able to maximize the exploration of the design space, while minimizing the effort for CAD setting. We show their high potential, but they involve the use of optimization methods difficult to implement today. The third method is designed to exploit the formulation of Koiter shell equations, which integrates mechanical and shape parameters, and to use it to perform shape optimization with respect to different mechanical criteria. This method also has the advantage of allowing the gradients calculation. On the other hand, we show that it is possible to use the Bezier’s control points as optimization parameters, and thus control the minimum number of variables necessary for the optimization problem, while allowing a broad exploration of the design space. However, this method is non-standard in the industry and involves specific developments that have been made in the context of this thesis. Finally, we implement in this thesis essentials elements of an optimization process for surface shapes.
|
57 |
Optimalizace tvaru strojních součástí s vlivem variabililty vstupních údajů / Shape Optimization of the Machine Components due to Variability of Input DataSawadkosin, Paranee January 2019 (has links)
The objective of this Master’s thesis is to find shape optimal design based on min- imizing friction force of thrust bearing by using genetic algorithm(GA) which is one of an optimization toolbox in Matlab. Reducing the friction force of thrust bearing is one way of making shaft to decreasing friction losses. With four parameters of thrust bearing geometry number of segments(m), angle of running surface(), segment inner radius(R0), and segment outer radius(R1) substitute in Reynolds’ equation. In order to know friction force, it is necessary to generate a connecting variable, oil film thickness(h0) from loading capacity(W ) and revolution per minute(rpm). Friction power loss, as well as weight func- tion conclude the final shape optimization of thrust bearing: m = 7, = 0.1, R0 = 15 mm, and R1 = 20 mm.
|
58 |
New Elements of Heat Transfer Efficiency Improvement in Systems and Units / New Elements of Heat Transfer Efficiency Improvement in Systems and UnitsTurek, Vojtěch January 2012 (has links)
Zvýšení efektivity výměny tepla vede k poklesu spotřeby energie, což se následně projeví sníženými provozními náklady, poklesem produkce emisí a potažmo také snížením dopadu na životní prostředí. Běžné způsoby zefektivňování přenosu tepla jako např. přidání žeber či vestaveb do trubek ovšem nemusí být vždy vhodné nebo proveditelné -- zvláště při rekuperaci tepla z proudů s vysokou zanášivostí. Jelikož intenzita přestupu tepla závisí i na charakteru proudění, distribuci toku a zanášení, které lze všechny výrazně ovlivnit tvarem jednotlivých součástí distribučního systému, bylo sestaveno několik zjednodušených modelů pro rychlou a dostatečně přesnou predikci distribuce a také aplikace pro tvarovou optimalizaci distribučních systémů využívající právě tyto modely. Přesnost jednoho z modelů byla dále zvýšena pomocí dat získaných analýzou 282 distribučních systémů v softwaru ANSYS FLUENT. Vytvořené aplikace pak lze využít během návrhu zařízení na výměnu tepla ke zvýšení jejich výkonu a spolehlivosti.
|
59 |
Calcul de gradient sur des paramètres CAO pour l’optimisation de forme / Gradient-based methods for shape optimization on CAD parametersLeblond, Timothée 22 March 2017 (has links)
Dans ce manuscrit, nous présentons une méthode d’optimisation de forme qui se base sur des paramètres géométriques comme des longueurs, des angles, etc. Nous nous appuyons sur des techniques d’optimisation basées sur un gradient. La sensibilité de la fonction objectif par rapport à la position des noeuds du maillage nous est fournie par un solveur adjoint que l’on considère comme une boîte noire. Afin d’optimiser par rapport aux paramètres CAO, nous nous concentrons sur l’évaluation de la sensibilité de la position des noeuds par rapport à ces paramètres. Ainsi, nous proposons deux approches par différences finies. La première méthode s’appuie sur une projection harmonique afin de comparer dans un même espace le maillage initial et celui obtenu suite à la variation d’un paramètre CAO. Les développements présentés dans ce manuscrit permettent d’étendre l’application aux formes ayant plusieurs frontières comme les collecteurs d’échappement. Nous avons développé une méthode d’interpolation adaptée à cette comparaison. L’ensemble du processus a été automatisé et nous en montrons l’entière efficacité sur des applications industrielles en aérodynamique interne. La deuxième méthode se base directement sur les géométries CAO pour évaluer cette sensibilité. Nous utilisons la définition intrinsèque des patches dans l’espace paramétrique (u;v) pour effectuer cette comparaison. Grâce à l’utilisation des coordonnées exactes en tout point de la surface fournies par la CAO, nous évitons d’avoir recours à une interpolation afin d’avoir la meilleure précision de calcul possible. Cependant, contrairement à la première méthode, elle requiert d’identifier les correspondances entre les patches d’une forme à l’autre. Une application sur un cas académique a été faite en aérodynamique externe. La pertinence de la première méthode a été démontrée sur des cas représentatifs et multiobjectifs, ce qui permettrait de faciliter son déploiement et son utilisation dans un cadre industriel. Quant à la deuxième méthode, nous avons montré son fort potentiel. Cependant, des développements supplémentaires seraient nécessaires pour une application plus poussée. Du fait qu’elles sont indépendantes des solveurs mécaniques et du nombre de paramètres, ces méthodes réduisent considérablement les temps de développement des produits, notamment en permettant l’optimisation multiphysique en grande dimension. / In this manuscript, we present a shape optimization method based on CAD parameters such as lengths, angles, etc. We rely on gradient-based optimization techniques. The sensitivity of the objective function, with respect to the mesh nodes position, is provided by an adjoint solver considered here as a black box. To optimize with respect to CAD parameters, we focus on computing the sensitivity of the nodes positions with respect to these parameters. Thus, we propose two approaches based on finite differences. The first method uses a harmonic projection to compare in the same space the initial mesh and the one obtained after a change of the set of CAD parameters. The developments presented in this manuscript open up new doors like the application to shapes with multiple borders such as exhaust manifolds. We also developed an interpolation method suitable for this comparison. The entire process is automated, and we demonstrate the entire effectiveness on internal aerodynamics industrial applications. The second method is directly based on the CAD geometries to assess this sensitivity. To perform this comparison, we use the intrinsic definition of the patches in the parametric space (u;v). Through the use of the exact coordinates at any point on the surface provided by the CAD, we avoid using an interpolation to get the best calculation accuracy possible. However, unlike the first method, it requires to identify the correspondence between patches from one shape to another. An application on an external aerodynamics academic case was made. The relevance of the first method is demonstrated on a representative multi-objective case, which facilitate its deployment use in an industrial environment. Regarding the second method, we showed its great potential. However, further developments are needed to handle more advanced cases. Because they are independent of the mechanical solver and the number of parameters, these methods significantly reduce product development time, particularly by allowing large and multiphysics optimization.
|
60 |
[es] OPTIMIZACIÓN DE FORMA DE MODELOS BIDIMENSIONALES DE ELEMENTOS FINITOS CON COMPORTAMIENTO ELÁSTICO-PLÁSTICO / [pt] OTIMIZAÇÃO DE FORMA DE MODELOS BIDIMENSIONAIS DE ELEMENTOS FINITOS COM COMPORTAMENTO ELASTO-PLÁSTICO / [en] SHAPE OPTIMIZATION OF 2D FINITE ELEMENT MODELS CONSIDERING ELASTO-PLASTIC BEHAVIOURCARLOS EDUARDO KUBRUSLY DA SILVA 04 October 2001 (has links)
[pt] Este trabalho tem por objetivo apresentar um sistema
integrado para otimização de forma de estruturas planas que
tenham comportamento elasto-plástico. A metodologia
implementada propõe uma alternativa à forma conservadora
com que tradicionalmente as estruturas têm sido otimizadas,
ou seja, admitindo-se que as mesmas possuam comportamento
linear elástico.
O sistema computacional é denominado integrado pois reúne
diversos módulos distintos para o tratamento do problema,
como modelagem geométrica, geração de malhas de elementos
finitos, análise não-linear da resposta da estrutura,
análise de sensibilidade,programação matemática e
otimização de estruturas.
A geometria do contorno da estrutura plana é definida por
meio de curvas (paramétricas)B-splines cúbicas. Estas, por
sua vez, são determinadas em função de um conjunto de
pontos de interpolação (pontos-chave) e condições de
contorno em seus vértices extremos.
A correta definição da geometria da estrutura é responsável
pelo sucesso do processo de otimização.
A resposta da estrutura às solicitações do carregamento
externo é avaliada pelo método dos elementos finitos. Para
isso, é necessário que o domínio da estrutura seja
discretizado. No presente trabalho foi empregado um gerador
automático de malhas não estruturadas de elementos finitos
isoparamétricos. A configuração de equilíbrio da estrutura
é obtida através de um procedimento iterativo/incremental
envolvendo o método de Newton-Raphson. Localmente, o
equilíbrio é satisfeito pela aplicação de um algoritmo
implícito de integração de tensões nos pontos que violarem
o critério de plastificação do material. A matriz tangente
de rigidez é atualizada a cada iteração da análise e é
obtida de forma consistente com o algoritmo de integração
das tensões, preservando as características de convergência
quadrática assintótica inerentes ao método de Newton-
Raphson.
No procedimento iterativo de otimização é empregado um
algoritmo de programac¸ ão quadrática recursiva que requer
a avaliação dos gradientes da função-objetivo e restrições.
Para tal, foi implementado um método semi-analítico para a
determinação das sensibilidades da resposta estrutural
envolvidas nas expressôes dos gradientes citados. O método
leva em consideração os efeitos da plastificação ocorrida
durante o carregamento da estrutura e é dito -exato- por
apresentar imprecisões apenas nos casos em que a magnitude
da perturbação da variável é muito pequena, não podendo ser
representada corretamente pelo hardware.
Os exemplos analisados mostram que a consideração do
comportamento elastoplástico da estrutura na otimização de
sua forma leva a configurações mais eficientes do que
aquelas obtidas admitindo-se a relação linear elástica
entre deformações e tensões. / [en] The main goal of this work is to present an integrated
system for the optimization of plane structures with
elastoplastic behavior. The methodology proposes an
alternative for the conservative way in which structures
traditionally have been optimized, i.e., that they
present linear elastic behavior. The computational system
is said to be integrated because it congregates distinct
modules for the solution of the problem, such as geometric
modelling, finite element mesh generation, non-linear
structural response analysis, sensitivity analysis,
mathematical programming and optimization of structures.
The geometry of the plane structure`s boundary is defined
by cubic (parametric) B-splines curves. Those, in turn, are
determined by a set of interpolation points (key points)
and boundary constraints at their ends. The correct
definition of the structure`s geometry is responsible for
the success of the optimization process.The structural
response to the applied loading is evaluated by the finite
element method. For that, the domain of the structure must
be discretized. In the present work, an automatic
unstructured mesh generator of isoparametric finite
elements has been used. The equilibrium layout of the
structure is obtained by an iterative/incremental procedure
using the standard Newton-Raphson method. Locally, the
equilibrium is satisfied by applying an implicit stress
return mapping algorithm at points which violate the yield
criterion of the material. The tangent stiffness matrix is
updated at each analysis iteration and it is obtained in
a way which is consistent with the return mapping
algorithm, so that the asymptotic quadratic rate of
convergence of the Newton-Raphson method is preserved.
The use of a quadratic recursive programming algorithm in
the optimization procedure involves the gradient evaluation
of the objective function and constraints. For that, a
semi-analytical method for the calculation of the response
sensitivities, which appear in the gradient expressions,
has been implemented. The technique takes into account the
plastic effects which take place during the loading of the
structure and is considered - exact- up to round-off
errors, which occurs when the magnitude of the perturbation
is so small that the hardware cannot accurately represent
it.The examples presented demonstrate that the
consideration of the elastoplastic behavior of the material
during the optimization process leads to structural layouts
which are more efficient than of those obtained under the
assumption of linear elastic relationship between
strains and stresses. / [es] Este trabajo tiene por objetivo presentar un sistema
integrado para otimización de forma de extructuras planas
que tengan comportamiento elástico-plástico. LA metodología
implementada propone una alternativa a la forma
conservadora con que tradicionalmente las extructuras han
sido optimizadas, o sea, admitiendo que las poseen um
comportamiento lineal-elástico. EL sistema computacional se
denomina integrado pues reúne diversos módulos para el
tratamiento del problema, como modelage geométrica,
generación de mallas de elementos finitos, análisis no
lineal de la respuesta de la extructura, análisis de
sensibilidad,programación matemática y otimización de
extructuras. LA geometría del contorno de la extructura
plana es definida por medio de curvas (paramétricas)B
splines cúbicas. Estas, por su vez, son determinadas en
función de un conjunto de puntos de interpolación (puntos
claves) y condiciones de contorno en sus vértices extremos.
La definición correta de la geometría de la extructura es
responsable por el éxito del proceso de otimización. La
respuesta de la extructura a las solicitudes de carga
externa se evalúa por el método de los elementos finitos.
Para esto, es necesario que el dominio de la extructura sea
discretizado. En este trabajo se utiliza un generador
automático de mallas no extructuradas de elementos finitos
isoparamétricos. La configuración de equilíbrio de la
extructura se obtiene a través de un procedimiento
iterativo/incremental que envuelve el método de Newton
Raphson. Localmente, el equilíbrio es satisfecho por la
aplicación de un algoritmo implícito de integración de
tensiones en los puntos que violen el critério de
plastificación del material. La matriz tangente de rigidez
se actualiza a cada iteración del análisis y se obtiene de
forma consistente con el algoritmo de integración de las
tensiones, preservando las características de convergencia
cuadrática asintótica inherentes al método de Newton
Raphson. En el procedimiento iterativo de otimización se
utiliza un algoritmo de programación cuadrática recursiva
que requiere la evaluación de los gradientes de la función
objetivo y restricciones. Para tal, se implementó un método
semi analítico para la determinación de las sensibilidades
de la respuesta extructural envolvidas en las expresóes de
los gradientes citados. EL método lleva en consideración el
hecho de que la plastificación que ocurre durante la carga
de la extructura y se dice exacta por presentar
imprecisiones apenas en los casos en que la magnitud de la
perturbación de la variable es muy pequeña, no puede ser
representada correctamente por el hardware. Los ejemplos
analizados muestran que la consideración del comportamiento
elástico-plástico de la extructura en la otimización de su
forma lleva la configuraciones más eficientes de que
aquellas obtenidas admitiendo la relación lineal elástica
entre deformaciones y tensiones.
|
Page generated in 0.0896 seconds