• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modulace časové disperze femtosekundových laserových pulsů / Modulation of time dispersion of femtosecond laser pulses

Vyhlídka, Štěpán January 2013 (has links)
In the presented thesis the topic of femtosecond pulse dispersion and methods of characterizing pulse profile are briefly introduced. Then, a functionality of a spatial light modulator is described. The spatial light modulator was used in an experimental scheme called the pulse shaper, which allowed independent amplitude and phase modulation of pulses. Duration and dispersion of pulses was measured by two methods called MIIPS and PICASO. MIIPS was also used for a reconstruction of a spectral phase of pulses. The autocorrelator was constructed on a design of the Mach-Zehnder interferometer. The duration of the shortest measured pulse (13.3 ± 0.5) fs was retrieved from measured interferometric autocorrelations by PICASO. Furthermore, theoretical dependence of pulse duration on the group delay dispersion was confirmed for pulses shorter than 120 fs. The group velocity dispersion was measured for fused silica windows and for a pair of diffraction gratings in the pulse shaper. Both values confirmed theoretical expectations.
22

Optimisation du traitement numérique de signaux générés dans un cristal de ICs

Lagrange, Simon 11 1900 (has links)
Ce travail a pour but l'optimisation du traitement numérique de signaux générés dans le cristal de ICs d'un calorimètre électromagnétique, dans le cadre d'expériences à haut taux de comptage telle que Belle II. La scintillation du cristal est convertie en signal électronique par une photopentode de Hamamatsu avec un gain de 150±2 électrons par photoélectron, pour être amplifiée par un préamplificateur. Le shaper, un filtre actif de type CR-(RC)^4, effectue ensuite une mise en forme du signal, qu'un ADC numérise alors pour qu'il soit traité numériquement par le DSP. À partir de formes de référence, le DSP peut extraire l'énergie déposée par une particule incidente et le temps d'occurence de son passage. Pour définir les formes de référence, on a déterminé que sur les trois approches étudiées, soit des formes moyennes expérimentales, soit à partir de la fonction analytique pour un filtre actif ou soit une somme de 3 gaussiennes, la plus optimale est l'ajustement de cette dernière fonction, que ce soit avec un générateur d'impulsions ou un cristal de ICs. De plus, la règle pour convertir l'amplitude des signaux mesurés en énergie déposée dans le cristal a été établie, malgré une gamme dynamique étroite. On a aussi observé des temps moyens de propagation de la scintillation dans le cristal de 47±4 ns et 3,4±0,5 $\mu$s, liés aux deux états d'excitation accessibles aux atomes du ICs, mais aussi à la géométrie du cristal, aux réflexions de photons sur les parois et au temps de réaction des circuits électroniques, qui allongent ces temps de scintillation mesurés. / The goal of this work is to optimize the digital processing of signals generated in the CsI crystal of an electromagnetic calorimeter, in the context of high counting rate experiments like Belle II. The scintillation from the crystal is converted into an electronic signal by a Hamamatsu photopentode with a gain of 150±2 electrons per photoelectron, to then be amplified by a preamplifier. The signal is then shaped by the shaper, a CR-(RC)^4 active filter, before it is digitized by an ADC, to be processed by the DSP. Using reference shapes, the DSP can extract the energy deposited by an incident particle and the time of occurence of it going through the crystal. To define the reference shapes, we determined that of the three approaches studied, which are experimental average shapes, the analytical function for an active filter and the sum of 3 gaussian functions, the best results were achieved using the last one, both with the pulse generator and the CsI crystal. Also, a conversion formula has been established to convert the measured signals' amplitudes into deposited energy in the crystal, despite a narrow dynamic range. We also observed average propagation times of the scintillation through the crystal of 47±4 ns and 3,4±0,5 $\mu$s, related to the two accessible excitation states of the CsI atoms, but also to the crystal's geometry, the reflections of photons on its surface and the reaction time of the electronics circuits, which make those scintillation times appear longer.
23

Tunable Broadband and High-Field THz Time-Domain Spectroscopy System

Cui, Wei 20 February 2024 (has links)
This thesis focuses on improving the performance of the THz time-domain spectroscopy system using second-order nonlinear crystals for THz generation and detection in terms of bandwidth, sensitivity, and THz field strength. The theories for the THz generation based on optical rectification and detection technique, electro-optical sampling, based on Pockels effect are introduced in Chapter 2. In Chapter 3, some experiments are presented to characterize the performances of the THz system based on a 180 fs Yb:KGW femtosecond laser amplifier operating at 1035 nm. The Yb-based femtosecond laser is becoming increasingly popular due to its robustness, high repetition rate, and high average power. However, the NIR bandwidth of these femtosecond lasers is limited by the gain bandwidth of the gain medium, and achieving pulse durations shorter than 180 fs is challenging. Consequently, the full bandwidth of THz time-domain spectroscopy systems is constrained by such laser systems. In order to broaden the THz bandwidth of such THz time-domain spectroscopy systems, our work in Chapter 4 combines the Yb:KGW femtosecond laser amplifier with an argon-filled hollow-core photonic crystal fiber pulse shaper to spectrally broaden the near-infrared pulses from 3.5 to 8.7 THz, increasing the measured THz bandwidth correspondingly from 2.3 THz to 4.5 THz. This is one of the first works to have broadband THz system based on Yb-based femtosecond lasers in the year of 2018. In Chapter 5, the tilted-pulse-front phase matching in the THz generation and detection scheme is demonstrated using the same surface-etched phase gratings on the front surfaces of the 2 mm-thick GaP generation and detection crystals. This scheme overcomes the THz generation and detection bandwidth limit of thick crystals imposed by the traditional collinear phase matching, while allowing the long nonlinear interaction length. This results in a THz spectral range from 0.1 to 6.5 THz with a peak at 3 THz and a peak dynamic range of 90 dB. In the range between 1.1 and 4.3 THz, the system dynamic range exceeds 80 dB. Based on this contact grating-based THz generation, the next step involves generating high-field THz above 2 THz. For high-field THz generation, the most renowned technique is the tilted-pulse-front technique, which generates high-field THz below 2 THz in a LiNbO₃ crystal. Most nonlinear optics experiments in the THz regime rely on such THz sources. To generate high-field THz above 2 THz, one promising candidate is organic THz crystals. However, most organic crystals require a pump laser with a wavelength exceeding 1200 nm, necessitating a more complex laser system. Additionally, the low damage threshold of these crystals are susceptible to compromise the stability of the measurements. Other techniques, such as air plasma and metallic spintronics, can generate ultra-broadband high-field THz from 0.1 to 30 THz, but the pulse energy within certain frequency windows is relatively low, rendering these THz sources less effective for nonlinearly driving specific optical transitions. On the other hand, semiconductor crystals as THz generation crystals, have a high damage threshold and can achieve good phase matching at wavelength around 800 or 1000 nm. In Chapter 6, high-field THz generation with a peak field of 303 kV/cm and a spectral peak at 2.6 THz is achieved with a more homogenous grating on the surface of a 1 mm-thick GaP generation crystal in a configuration collimating the near-infrared generation beam with a pulse energy of 0.57 mJ onto the generation crystal. The experiments also show that the system operates significantly below the GaP damage threshold and THz generation saturation regime, indicating that the peak THz field strength can approach 1 MV/cm, with a 5 mJ near-infrared generation pulse. This is the first high-field THz source based on semiconductor crystals capable of generating high-field THz above 2 THz. With such a THz source, we can conduct nonlinear optics experiments above 2 THz, including the study of phonon-assisted nonlinearities, coherent control of Bose-Einstein condensation of excitons and polaritons in semiconductor cavities, and saturable absorption in molecular gases.
24

Third-Party TCP Rate Control

Bansal, Dushyant January 2005 (has links)
The Transmission Control Protocol (TCP) is the dominant transport protocol in today?s Internet. The original design of TCP left congestion control open to future designers. Short of implementing changes to the TCP stack on the end-nodes themselves, Internet Service Providers have employed several techniques to be able to operate their network equipment efficiently. These techniques amount to shaping traffic to reduce cost and improve overall customer satisfaction. <br /><br /> The method that gives maximum control when performing traffic shaping is using an inline traffic shaper. An inline traffic shaper sits in the middle of any flow, allowing packets to pass through it and, with policy-limited freedom, inspects and modifies all packets as it pleases. However, a number of practical issues such as hardware reliability or ISP policy, may prevent such a solution from being employed. For example, an ISP that does not fully trust the quality of the traffic shaper would not want such a product to be placed in-line with its equipment, as it places a significant threat to its business. What is required in such cases is third-party rate control. <br /><br /> Formally defined, a third-party rate controller is one that can see all traffic and inject new traffic into the network, but cannot remove or modify existing network packets. Given these restrictions, we present and study a technique to control TCP flows, namely triple-ACK duplication. The triple-ACK algorithm allows significant capabilities to a third-party traffic shaper. We provide an analytical justification for why this technique works under ideal conditions and demonstrate via simulation the bandwidth reduction achieved. When judiciously applied, the triple-ACK duplication technique produces minimal badput, while producing significant reductions in bandwidth consumption under ideal conditions. Based on a brief study, we show that our algorithm is able to selectively throttle one flow while allowing another to gain in bandwidth.
25

Third-Party TCP Rate Control

Bansal, Dushyant January 2005 (has links)
The Transmission Control Protocol (TCP) is the dominant transport protocol in today?s Internet. The original design of TCP left congestion control open to future designers. Short of implementing changes to the TCP stack on the end-nodes themselves, Internet Service Providers have employed several techniques to be able to operate their network equipment efficiently. These techniques amount to shaping traffic to reduce cost and improve overall customer satisfaction. <br /><br /> The method that gives maximum control when performing traffic shaping is using an inline traffic shaper. An inline traffic shaper sits in the middle of any flow, allowing packets to pass through it and, with policy-limited freedom, inspects and modifies all packets as it pleases. However, a number of practical issues such as hardware reliability or ISP policy, may prevent such a solution from being employed. For example, an ISP that does not fully trust the quality of the traffic shaper would not want such a product to be placed in-line with its equipment, as it places a significant threat to its business. What is required in such cases is third-party rate control. <br /><br /> Formally defined, a third-party rate controller is one that can see all traffic and inject new traffic into the network, but cannot remove or modify existing network packets. Given these restrictions, we present and study a technique to control TCP flows, namely triple-ACK duplication. The triple-ACK algorithm allows significant capabilities to a third-party traffic shaper. We provide an analytical justification for why this technique works under ideal conditions and demonstrate via simulation the bandwidth reduction achieved. When judiciously applied, the triple-ACK duplication technique produces minimal badput, while producing significant reductions in bandwidth consumption under ideal conditions. Based on a brief study, we show that our algorithm is able to selectively throttle one flow while allowing another to gain in bandwidth.
26

Network Emulation, Pattern Based Traffic Shaping and KauNET Evaluation

Awan, Zafar Iqbal, Azim, Abdul January 2008 (has links)
Quality of Service is major factor for a successful business in modern and future network services. A minimum level of services is assured indulging quality of Experience for modern real time communication introducing user satisfaction with perceived service quality. Traffic engineering can be applied to provide better services to maintain or enhance user satisfaction through reactive and preventive traffic control mechanisms. Preventive traffic control can be more effective to manage the network resources through admission control, scheduling, policing and traffic shaping mechanisms maintaining a minimum level before it get worse and affect user perception. Accuracy, dynamicity, uniformity and reproducibility are objectives of vast research in network traffic. Real time tests, simulation and network emulation are applied to test uniformity, accuracy, reproducibility and dynamicity. Network Emulation is performed over experimental network to test real time application, protocol and traffic parameters. DummyNet is a network emulator and traffic shaper which allows nondeterministic placement of packet losses, delays and bandwidth changes. KauNet shaper is a network emulator which creates traffic patterns and applies these patterns for exact deterministic placement of bit-errors, packet losses, delay changes and bandwidth changes. An evaluation of KauNet with different patterns for packet losses, delay changes and bandwidth changes on emulated environment is part of this work. The main motivation for this work is to check the possibility to delay and drop the packets of a transfer/session in the same way as it has happened before (during the observation period). This goal is achieved to some extent using KauNet but some issues with pattern repetitions are still needed to be solved to get better results. The idea of history and trace-based traffic shaping using KauNet is given to make this possibility a reality.
27

Optimální rozložení optické intenzity v laserovém svazku pro FSO komunikace / Optimal Intensity Distribution in a Laser Beam for FSO Communications

Barcík, Peter January 2016 (has links)
Dizertačná práca je zameraná na štúdium a analýzu rozloženia optickej intenzity v laserovom zväzku v rovine vysielacej (TXA) a prijímacej apertúry (RXA), ktorý podlieha zmenám ako pri šírení voľným priestorom, tak pri šírení atmosférou. Cieľom práce je nájsť optimálne rozloženie optickej intezity v rovine vysielacej apertúry, ktoré bude minimálne ovplyvnené apertúrou vysielača a atmosférickými turbulenciami. Za účelom analýzy šírenia optickej vlny atmosférou bola využitá simulácia založená na metóde Split-Step. Šírenie Flattened Gaussian zväzku bolo analyzované pre režim slabých a stredných turbulencií. Práca sa zaoberá použitím multimódového vlákna s veľkým priemerom jadra ako tvarujúceho elementu a obsahuje návrh refrakčného tvarovača, pomocou ktorého je možno konvertovať Gaussovský zväzok na zväzok s uniformným rozložením optickej intenzity. Nakoniec je pomocou získaných poznatkov zostavený plne fotonický vysielač a prijímač, ktorých použitie spočíva v generovaní a príjmaní optickej koherentnej vlny prenášajúcej presnú fázu.
28

Ultrashort laser pulse shaping for novel light fields and experimental biophysics

Rudhall, Andrew Peter January 2013 (has links)
Broadband spectral content is required to support ultrashort pulses. However this broadband content is subject to dispersion and hence the pulse duration of corresponding ultrashort pulses may be stretched accordingly. I used a commercially-available adaptive ultrashort pulse shaper featuring multiphoton intrapulse interference phase scan technology to characterise and compensate for the dispersion of the optical system in situ and conducted experimental and theoretical studies in various inter-linked topics relating to the light-matter interaction. Firstly, I examined the role of broadband ultrashort pulses in novel light-matter interacting systems involving optically co-trapped particle systems in which inter-particle light scattering occurs between optically-bound particles. Secondly, I delivered dispersion-compensated broadband ultrashort pulses in a dispersive microscope system to investigate the role of pulse duration in a biological light-matter interaction involving laser-induced cell membrane permeabilisation through linear and nonlinear optical absorption. Finally, I examined some of the propagation characteristics of broadband ultrashort pulse propagation using a computer-controlled spatial light modulator. The propagation characteristics of ultrashort pulses is of paramount importance for defining the light-matter interaction in systems. The ability to control ultrashort pulse propagation by using adaptive dispersion compensation enables chirp-free ultrashort pulses to be used in experiments requiring the shortest possible pulses for a specified spectral bandwidth. Ultrashort pulsed beams may be configured to provide high peak intensities over long propagation lengths, for example, using novel beam shapes such as Bessel-type beams, which has applications in biological light-matter interactions including phototransfection based on laser-induced cell membrane permeabilisation. The need for precise positioning of the beam focus on the cell membrane becomes less strenuous by virtue of the spatial properties of the Bessel beam. Dispersion compensation can be used to control the temporal properties of ultrashort pulses thus permitting, for example, a high peak intensity to be maintained along the length of a Bessel beam, thereby reducing the pulse energy required to permeabilise the cell membrane and potentially reduce damage therein.

Page generated in 0.0351 seconds