• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Shear layer instabilities and flow-acoustic coupling in valves: application to power plant components and cardiovascular devices

Barannyk, Oleksandr 07 May 2014 (has links)
In the first part of this dissertation, the phenomenon of self-sustained pressure os-cillations due to the flow past a circular, axisymmetric cavity, associated with inline gate valves, was investigated. In many engineering applications, such as flows through open gate valves, there exists potential for coupling between the vortex shedding from the up-stream edge of the cavity and a diametral mode of the acoustic pressure fluctuations. The effects of the internal pipe geometry immediately upstream and downstream of the shal-low cavity on the characteristics of partially trapped diametral acoustic modes were in-vestigated numerically and experimentally on a scaled model of a gate valve mounted in a pipeline that contained convergence-divergence sections in the vicinity of the valve. The resonant response of the system corresponded to the second acoustic diametral mode of the cavity. Excitation of the dominant acoustic mode was accompanied by pressure oscillations, and, in addition to that, as the angle of the converging-diverging section of the main pipeline in the vicinity of the cavity increased, the trapped behavior of the acoustic diametral modes diminished, and additional antinodes of the acoustic pressure wave were observed in the main pipeline. In addition to that, the effect of shallow chamfers, introduced at the upstream and/or downstream cavity edges, was investigated in the experimental system that con-tained a deep, circular, axisymmetric cavity. Through the measurements of unsteady pressure and associated acoustic mode shapes, which were calculated numerically for several representative cases of the internal cavity geometry, it was possible to identify the configuration that corresponded to the most efficient noise suppression. This arrangement also allowed calculation of the azimuthal orientation of the acoustic modes, which were classified as stationary, partially spinning or spinning. Introduction of shallow chamfers at the upstream and the downstream edges of the cavity resulted in changes of azimuthal orientation and spinning behaviour of the acoustic modes. In addition, introduction of splitter plates in the cavity led to pronounced change in the spatial orientation and the spinning behaviour of the acoustic modes. The short splitter plates changed the behaviour of the dominant acoustic modes from partially spinning to stationary, while the long split-ter plates enforced the stationary behaviour across all resonant acoustic modes. Finally, the evolution of fully turbulent, acoustically coupled shear layers that form across deep, axisymmetric cavities and the effects of geometric modifications of the cavity edges on the separated flow structure were investigated using digital particle image velocimetry (PIV). Instantaneous, time- and phase-averaged patterns of vorticity pro-vided insight into the flow physics during flow tone generation and noise suppression by the geometric modifications. In particular, the first mode of the shear layer oscillations was significantly affected by shallow chamfers located at the upstream and, to a lesser degree, the downstream edges of the cavity. In the second part of the dissertation, the performance of aortic heart valve pros-thesis was assessed in geometries of the aortic root associated with certain types of valve diseases, such as aortic valve stenosis and aortic valve insufficiency. The control case that corresponds to the aortic root of a patient without valve disease was used as a reference. By varying the aortic root geometry, it was possible to investigate corresponding changes in the levels of Reynolds shear stress and establish the possibility of platelet activation and, as a result of that, the formation of blood clots. / Graduate / 0541 / 0546 / 0548 / 0986 / alexbn024@gmail.com
32

Etude numérique de la diffusion d'une onde acoustique par une couche de cisaillement turbulente à l'aide d'une simulation aux grandes échelles / Study of the scattering of an acoustic wave by a turbulent shear layer using large-eddy simulation

Bennaceur, Iannis 30 June 2017 (has links)
Lors des mesures acoustiques dans les souffleries à veine ouverte, les ondes acoustiques émises par une maquette ou une source située dans la veine se propagent dans la couche de cisaillement turbulente qui se forme aux abords du jet avant d’être reçues par les microphones localisés en dehors. L’onde acoustique interagit avec le champ de vitesse turbulent de la couche de mélange ce qui a pour effet de modifier son contenu spectral, de redistribuer spatialement son énergie et de moduler sa phase et son amplitude, on parle alors de diffusion acoustique. Cette thèse a consisté à l’étude de la diffusion d’une onde acoustique par une couche de cisaillement turbulente à l’aide d’une simulation numérique aux grandes échelles. Pour cela, il a d’abord été nécessaire de réaliser la simulation numérique aux grandes échelles d’une couche de cisaillement turbulente plane dans son régime auto-similaire. Dans un second temps, nous avons simulé l’interaction entre une onde acoustique et l’écoulement turbulent afin d’étudier les caractéristiques du champ de pression diffusé qui en résulte. Nous avons notamment vérifié que la simulation était capable de prédire précisément les fréquences sur lesquelles est répartie la plupart de l’énergie acoustique ainsi que la forme du spectre de pression diffusé. Finalement, le champ de vitesse du milieu turbulent qui est corrélé avec l’enveloppe du champ de pression diffusé a été reconstruit à l’aide de la méthode de l’estimation stochastique linéaire. Cette méthode nous a notamment permis de visualiser les larges structures turbulentes qui interviennent principalement dans le mécanisme de diffusion acoustique. / During open jet wind tunnel measurements, the acoustic waves emitted by a device or an acoustic source located inside the flow propagate inside the turbulent shear layer that develops at the periphery of the jet before being received by microphones located outside the flow. The acoustic wave interacts with the turbulent velocity field leading to a change of directivity, a phase and amplitude modulation as well as a spectral re-distribution of the acoustic energy over a band of frequencies. This phenomenon is known as acoustic scattering. This work has consisted in the study of the scattering of an acoustic wave by a turbulent shear layer using large-eddy simulation. The first step of the study has consisted in the large-eddy simulation of a turbulent shear layer in its self-similar state. In a second second step, the direct computation of the interaction between the acoustic wave and the turbulent flow has been performed in order to study the characteristics of the resulting scattered pressure field. It has been shown that the numerical simulation is able to accurately predict the frequencies on which the main part of the scattered energy is redistributed, as well as the shape of the scattered pressure spectrum. Finally, the turbulent velocity field which is correlated with the envelope of the scattered pressure field is reconstructed using the linear stochastic estimation method. This method has enabled the visualization of the large turbulent structures that mainly take part in the acoustic scattering mechanism.
33

Effets d’interfaces poroélastiques sur la stabilité d’un écoulement incompressible cisaillé / Influence of poroeleastic interfaces on incompressible shear flow stability

Pluvinage, Franck 08 October 2015 (has links)
L’objectif de ce travail est d’étendre l’étude locale de la stabilité linéaire des interactions fluide-structure à des domaines peu ou pas encore abordés dans la littérature ; l’influence des interfaces poroélastiques sur les couches limites bidimensionnelles, tridimensionnelles, ou aspirées, ainsi que l’écoulement dans une canopée modélisé par un profil de vitesse réaliste, sont ainsi traités. Les résultats révèlent que dans les couches limites 3D, la compliance réduit le domaine d’instabilité du mode TS dominant mais fait apparaître des modes hydroélastiques ; à l’inverse, la perméabilité stabilise ces derniers tout en déstabilisant l’onde TS, s’apparentant en cela à un amortissement. Sur les ailes en flèche, la transition dépend localement d’instabilités nommées tourbillons Crossflow (CF) d’origine non-visqueuse ; l’effet déstabilisant de la perméabilité sur celles-ci est presque nul tandis que son action positive sur les modes hydroélastiques reste intact, offrant des perspectives prometteuses. Dans le domaine des couches limites aspirées, la quasi-totalité des études publiées reposent sur l’hypothèse d’une perméabilité négligeable et d’une paroi rigide ; or il est démontré ici que la perméabilité (indissociable de la succion) exerce même à faible dose une déstabilisation sur la perturbation dominante et que la compliance (pouvant résulter d’un allègement) provoque l’apparition d’une instabilité absolue. Pour finir, l’attention est portée sur les écoulements dans une canopée -assimilables à des couches de mélange. La stabilité linéaire de l’onde nommée monami ou honami est étudiée sur la base d’un profil de vitesse moyenne réaliste calculé numériquement, puis comparé aux résultats obtenus avec le profil en lignes brisées usuellement employé. L’effet de la force de traînée, communément considéré comme amortissant, se révèle au contraire déstabilisant lorsqu’il est pris en compte dès le calcul du profil de vitesse moyenne. / Local linear stability of fluid-structure interactions is investigated in uncustomary fields such as swept, unswept and asymptotic suction incompressible boundary layers developing over compliant, porous plates –in the limit of small permeability– or relatistically-modeled incompressible flows over a canopy. Results show that compliance has a stabilizing effect on the 3D most instable hydrodynamic mode but allows hydroelastic modes to emerge, which take the form of travelling wave flutter instabilities ; conversely, permeability tends to damp the latter ones but to destabilize the former ones. Transition on swept wings also locally depends on 3D unviscid instabilities called Crossflow vortices, hardly unstabilized by permeability ; this provides promizing outlets, since permeability has still a strong positive effect on 3D hydroelastic modes. In the field of incompressible parallel boundary layer flows with uniform suction through the wall, most of the existing studies are based on the assumption that plate’s porosity and flexibility are negligible. Nevertheless, proof is given here that permeability (linked to suction) exerts a strong destabilizing effect on the Tollmien-Schlichting most instable mode. Besides, compliance (that can result from lightering measures) reveals to provoke an absolute instability that is likely to contaminate the entire domain. Finally, attention is paid to incompressible flows across a canopy, that are similar to mixing layers. Linear stability of the coherent motions called monami or honami is adressed using a relatistically-computed velocity profile, then compared to the results obtained with the customary piecewise linear velocity profile. Then, drag force variations are taken into account as soon as velocity profile computing. The result is that drag happens to have a destabilizing effect on the flow, instead of the commonly admitted damping effect.
34

Electroactive morphing for the aerodynamic performance improvement of next generation airvehicles / Morphing électroactif pour l'optimisation des performances aérodynamiques de la prochaine génération des aéronefs

Scheller, Johannes 20 October 2015 (has links)
La nécessité d’améliorer la performance aérodynamique des véhicules aériens est à l’origine d’intenses recherches sur l’optimisation en temps réel de la forme de la voilure. Cette optimisation en temps réel ne peut être atteinte que par le morphing de la surface portante en utilisant des matériaux et des actionneurs appropriés. L’objet de cette thèse est d’étudier des actionneurs basés sur des matériaux intelligents pour l’optimisation de la performance aérodynamique sur différentes échelles de temps (d’actionnement basse fréquence et haute fréquence). Premièrement, différents types d’actionnement , qu’ils soient basse fréquence et grand déplacement grâce aux AMF ou qu’ils soient haute fréquence et faible déplacement utilisant des matériaux piézoélectrique sont considérés. Leurs effets sur l’écoulement environnant ont été analysés séparément en utilisant des mesures PIV dédiées. Les expériences ont montré la capacité de déformation de la technologie AMF sous des charges aérodynamiques réalistes. Il a été souligné que malgré la fréquence d’actionnement limitée l’hypothèse "quasi-statique" doit être soigneusement adaptée à la gamme de nombres de Reynolds de 200.000. Les mesures PIV menées derrière le bord de fuite à actionnement piézoélectrique ont montré la capacité de l’actionneur à réduire les modes d’instabilité de la couche de cisaillement. Une fréquence optimale d’actionnement de 60 Hz a été identifiée à l’aide d’une analyse en boucle ouverte. Dans un deuxième temps, une hybridation des deux technologies précédemment étudiés a été proposée. Les actionneurs utilisés, AMFs et MFCs, ont été modélisés et la capacité d’action combinée a été démontrée. Le prototype conçu, suivant le profil aérodynamique NACA4412 a été testé en la soufflerie et il a été montré que la combinaison de ces deux technologies permet d’agir sur les tourbillons de la zone de cisaillement ainsi que de contrôler la portance. / The need to improve the aerodynamic performance of air vehicles is the origin of intense research on the real-time optimization of the airfoil shape. This real-time optimization can only be achieved by morphing the airfoil using adequate materials and actuators. The object of this thesis is to study smart-material actuators for aerodynamic performance optimization on different time scales (low-frequent and high-frequent actuation). First, the effects of the distinct actuation types, low-frequency large-displacement shape-memory alloy (SMA) and high-frequency low-displacement piezoelectric, on the surrounding flow are analyzed separately using dedicated time-resolved particle image velocimetry (TR-PIV) measurements. The experiments showed the deformation capacity of the SMA technology under realistic aerodynamic loads. Furthermore, it was highlighted that despite the limited actuation frequency the “quasi-static” hypothesis has to be carefully adapted for the Reynolds number range of 200.000. The PIV measurements conducted behind the piezoelectrically actuated trailing edge showed the capacity of the actuator to reduce the shear-layer instability modes. An open-loop optimum actuation frequency of 60 Hz has been identified. Secondly, a hybridization of the two previously studied technologies has been proposed. The implied actuators, SMAs and macro fiber composites (MFCs), have been modelled and the combined actuation capacity has been demonstrated. The designed prototype NACA4412 airfoil has been tested in the S4 wind-tunnel of IMFT and it was shown that the combination of the two technologies allows acting on the shear-layer vortices as well as control the lift.
35

Measurement uncertainty budget of an interferometric flow velocity sensor

Bermuske, Mike, Büttner, Lars, Czarske, Jürgen 06 September 2019 (has links)
Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their in uences to the measurement uncertainty budget of the sensor is discussed. Finally, generated measurement results for the film flow of an impinging jet cleaning experiment are presented.
36

Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

Memon, Muhammad Omar 24 May 2017 (has links)
No description available.
37

Bruit rayonné par un écoulement subsonique affleurant une cavité cylindrique : caractérisation expérimentale et simulation numérique par une approche multidomaine d'ordre élevé

Desvigne, Damien 03 December 2010 (has links)
Le bruit de cavité est un phénomène très fréquent dans le domaine des transports aériens.Il survient notamment lors de l’approche à l’atterrissage, où des interactions entre la cellule de l’aéronef et l’écoulement sont à l’origine de fortes émissions tonales. Il devient dès lors une source de pollution acoustique non-négligeable pour les populations résidant à proximité de zones aéroportuaires. Les études numériques et expérimentales décrites jusqu’à présent dans la littérature abordent essentiellement le cas des cavités rectangulaires. Pourtant, les cavités rencontrées en pratique dans l’industrie aéronautique impliquent des géométries souvent plus complexes. Lorsque ces cavités sont soumises à une excitation de nature aérodynamique, leur spécificité géométrique conduit le plus souvent à des réponses acoustiques assez éloignées des estimations issues de modèles académiques construits sur l’observation de cavités rectangulaires. Quelques travaux seulement abordent le cas des cavités cylindriques.Ce travail est consacré à l’étude aéroacoustique des cavités cylindriques, à l’initiative d’Airbus. Il s’inscrit dans le cadre du projet AEROCAV soutenu par la Fondation de Recherche pour l’Aéronautique & l’espace (FRAE). Son objectif est de déterminer les mécanismes impliqués dans les émissions acoustiques intenses et tonales pour les configurations étudiées.Une première partie présente les résultats expérimentaux issus des campagnes de mesures menées dans la soufflerie anéchoïque du Centre Acoustique du LMFA et de l’école Centrale de Lyon. Un modèle semi-empirique, reposant sur l’hypothèse d’une résonance acoustique pilotée par les instabilités présentes dans la couche de cisaillement à l’ouverture de la cavité,est construit à partir du modèle d’Elder (1978). Le modèle permet d’estimer les fréquences susceptibles de dominer l’acoustique rayonnée en champ lointain à partir de la donnée du champ moyen de vitesse longitudinale, que l’on mesure dans le plan de l’écoulement par Vélocimétrie par Imagerie des Particules (PIV).Une seconde partie est destinée au calcul direct du bruit rayonné par un écoulement laminaire ou turbulent affleurant une cavité cylindrique de référence. Il consiste à calculer le champ acoustique directement à partir de la résolution des équations tridimensionnelles de la mécanique des fluides. Le solver Alesia est présenté dans une version modifiée et adaptée à la mise en oeuvre d’une approche multidomaine d’ordre élevé faisant intervenir plusieurs maillages se recouvrant. Des techniques d’interpolation sont spécifiquement développées en vue d’assurer une communication bidirectionnelle entre les différents maillages, malgré des contraintes géométriques fortes. Un modèle d’excitation de l’écoulement est aussi développé afin de disposer de fluctuations dans l’écoulement incident, pour le cas turbulent. Ces deux points font l’originalité des calculs réalisés.Les simulations, menées sur une cavité de rapport d’aspect géométrique égal à 1 et soumise à un écoulement incident à Mach 0.2, montrent que le rayonnement acoustique peut être fidèlement reproduit numériquement. La couche de cisaillement est caractérisée par la présence de deux larges structures tourbillonnaires s’amplifiant lors de leur convection. Leur présence s’accompagne de fortes fluctuations de vitesse à l’origine d’un débit aérodynamique de fluide à l’ouverture qui excite la cavité acoustiquement. Une résonance forcée s’établit dans celle-ci, excitant la couche de mélange au voisinage du point de séparation. Ce couplage auto-entretenu est à l’origine du rayonnement acoustique intense et fortement tonal de la cavité. Il s’établit à une fréquence proche de la fréquence prédite par le modèle semi-empirique développé. / Cavity noise is a very frequent phenomenon in air transport. It occurs in particular during landing approaches, where airframe–flow interactions are responsible for strong tonal emissions. Accordingly, it turns to be a non negligible source of acoustic pollution for populations living near airport areas. Numerical and experimental studies reported in the literature tackle essentially the case of rectangular cavities. Nevertheless, cavities may often exhibit more complex shapes in practice. When subject to aerodynamic excitations, and because of their geometrical specificity, these cavities may have acoustic responses which can be rather far from estimations resulting from academic models designed for rectangular cavities. Only asmall number of studies tackle the case of cylindrical cavities.The present work requested by Airbus is dedicated to the study of aeroacoustics in cylindrical cavities. This work was been supported by the Fondation de Recherche pour l’Aéronautique& l’Espace (FRAE) under contract reference AEROCAV. It aims at discerning the mechanisms responsible for strong and tonal acoustic emissions for the studied configurations.Experimental data resulting from measurements performed in the anechoic wind-tunnel of the Centre Acoustique at ´Ecole Centrale de Lyon are presented in a first part. A semi-empirical model based on the hypothesis of a shear-layer driven acoustic resonance is constructed from the Elder model (1978). The model provides an estimation of the frequences which are likely to be predominant in the far-field acoustics, given the mean streamwise velocity field, currently measured in the flow plane by Particle Image Velocimetry (PIV).A second part deals with the direct computation of the noise radiated by a laminar or turbulent grazing flow over a standard cylindrical cavity. The method consists in the calculationof the acoustic field directly from the resolution of the tridimensional Navier–Stokes equations. The Alesia solver is presented in a modified form, adapted to the implementationof a high-order chimera method involving several overlapping grids. Interpolation techniques have been specifically developed to achieve a bidirectional communication between the meshes in spite of strong geometrical constraints. A flow excitation model has also been constructed in order to obtain fluctuations into the incoming flow in the turbulent case. These two last points make the present computations original. The simulations, which are performed on a cavity of geometric ratio taken as 1 and subject to a grazing flow of Mach 0.2, reveal that it is possible to retrieve the radiated noise numerically with high fidelity. They indicate the presence of two large amplifying vortices in the shearlayer. These vortices go with strong velocity fluctuations giving rise to an inflow of fluid at the cavity mouth which excites the cavity acoustically. A forced acoustic resonance occurs into the cavity, then destabilises the shear layer near the separation point. This self-sustained coupling is responsible for strong tonal radiations from the cavity. The frequency of the radiated noise is close to the one predicted by the semi-empirical model.
38

An Experimental Investigation on Waves and Coherent Structures in a Three-Dimensional Open Cavity Flow / Étude Expérimentale des Ondes et Structures Cohérentes dans un Écoulement Tridimensionnel de Cavité Ouverte.

Basley, Jérémy 19 October 2012 (has links)
Une écoulement de cavité ouverte tridimensionnel saturé non-linéairement est étudié par une approche spatio-temporelle utilisant des données expérimentales résolues à la fois en temps et en espace. Ces données ont été acquises dans deux plans longitudinaux, respectivement perpendiculaire et parallèle au fond de la cavité, dans le régime incompressible, en air ou en eau. À l'aide de multiples méthodes de décompositions globales en temps et en espace, les ondes et les structures cohérentes constituant la dynamique dans le régime permanent et pouvant être produites par des mécanismes d'instabilités différents sont identifiées et caractérisées.Tout d'abord, on approfondit la compréhension de l'effet des non-linéarités sur les oscillations auto-entretenues de la couche cisaillée impactante et leurs interactions avec l'écoulement intra-cavitaire. En particulier, l'analyse spectrale d'une portion de l'espace des paramètres permet de mettre en évidence un lien entre l'accrochage des modes d'oscillations auto-entretenues, la modulation d'amplitude au niveau du coin impactant et l'intermittence de ces modes. De plus, l'observation des basses fréquences intéragissant fortement avec les oscillations de la couche de mélange démontre l'existence d'une dynamique tridimensionnelle intrinsèque à l'intérieur de la cavité malgré les perturbations causées par la couche cisaillée instable.Les analyses de stabilité linéaire ont montré que des instabilités centrifuges peuvent résulter de la courbure induite par la recirculation. L'étude de la dynamique après saturation révèle de nombreuses structures cohérentes dont les propriétés sont quantifiées et classées en s'appuyant sur la forme des instabilités sous-jacentes: des ondes transverses progressives ou stationnaires. Enfin, certains comportements des structures saturées suggèrent que les mécanismes non-linéaires gouvernant le développement de l'écoulement une fois sorti du régime linéaire pourraient être étudiés dans le cadre des équations d'amplitude. / A space-time study of a three-dimensional nonlinearly saturated open cavity flow is undertaken using time-resolved space-extended experimental data, acquired in both cross-stream and spanwise planes, in incompressible air and water flows. Through use of multiple modal decompositions in time and space, the waves and coherent structures composing the dynamics in the permanent regime are identified and characterised with respect to the instabilities arising in the flow.Effects of nonlinearities are thoroughly investigated in the impinging shear layer, regarding the self-sustained oscillations and their interactions with the inner-flow. In particular, the analysis conducted throughout the parameter space enlightens a global connection between the selection of locked-on modes and the amplitude modulation at the impingement and the mode switching phenomenon. Furthermore, observations of low frequencies interacting drastically with the shear layer flapping motion underline the existence of intrinsic coherent three-dimensional dynamics inside the cavity in spite of the shear layer disturbances.Linear stability analyses have demonstrated that centrifugal instabilities are at play along the main recirculation. The present investigation of the dynamics after onset of the saturation reveals numerous space-time coherent structures, whose properties are quantified and classified with respect to the underlying instabilities: travelling or standing spanwise waves. Finally, some patterns exhibited by the saturated structures suggest that the nonlinear mechanisms governing the mutations of the flow after the linear regime could gain more insight in the frame of amplitude equations.

Page generated in 0.0426 seconds