• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 198
  • 195
  • 24
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • 2
  • 2
  • Tagged with
  • 544
  • 544
  • 162
  • 150
  • 148
  • 138
  • 134
  • 91
  • 61
  • 58
  • 54
  • 53
  • 51
  • 47
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Consolidation, compression, and shear strength of four western Oregon forest soils

McNabb, David H. 02 April 1990 (has links)
Forest soils with low bulk densities are often considered less susceptible to compaction than soils with higher bulk densities. The objective of this study was to determine if soil strength controlled the compression of soils with low bulk density. Four soils were selected for this evaluation. Three of these were andic soils with low bulk density and the fourth soil was a more dense, cohesive soil. Undisturbed samples of saturated and partly saturated soil were compressed in a one-dimensional consolidation test apparatus. Measurements with separate samples were at one of 7 normal stresses between 0.033 and 1.96 MPa. Shear strength of saturated soil was measured in direct shear tests. Primary consolidation of saturated soil was completed in less than one minute at all normal stresses. Shear stress and bulk density increased continuously during shear strain. The compression index of the cohesive soil was significantly larger (p<0.05) than that of the andic soils. The shear strength of andic soils (average cohesion intercept of 0.016 MPa and friction angle of 33.3°) was significantly higher (p<0.05) than the cohesive soil (cohesion intercept of 0.028 MPa and friction angle of 28.9°). When saturated, the cohesive soil was more compressible than the andic soils because of lower soil strength. A nonlinear model of soil compression was developed that accurately predicted the compressed density of saturated and partly saturated soil as a function of normal stress, initial bulk density of undisturbed samples, and degree of saturation. As degree of saturation decreased, the compressibility of the cohesive soil decreased more rapidly than it did for the andic soils. As a result, bulk density of dry cohesive soil increased less than it did for dry andic soils. Differences in the compressibility of soils were attributed to texture and clay mineralogy. The differences in the compressibility of these soils were much smaller than were the differences in bulk density. Decreasing water content affected the compressibility of the cohesive soil more than it affected the andic soils. Because soil strength controls the compressibility of these forest soils regardless of bulk density, it will also determine the susceptibility of soils to compaction by machines. / Graduation date: 1991
182

Quantitative Characterization of Natural Rock Discontinuity Roughness In-situ and in the Laboratory

Tatone, Bryan Stanley Anthony 16 February 2010 (has links)
The surface roughness of unfilled rock discontinuities has a major influence on the hydro-mechanical behaviour of discontinuous rock masses. Although it is widely recognized that surface roughness is comprised of large-scale (waviness) and small-scale (unevenness) components, most investigations of surface roughness have been restricted to small fracture surfaces (<1m2). Hence, the large-scale components of roughness are often neglected. Furthermore, these investigations typically define roughness using two-dimensional profiles rather than three-dimensional surfaces, which can lead to biased estimates of roughness. These limitations have led to some contradictory findings regarding roughness scale effects. This thesis aims to resolve some of these issues. The main findings indicate that discontinuity roughness increases as a function of the sampling window size contrary to what is commonly assumed. More importantly, it is shown that the estimated roughness significantly decreases as the resolution of surface measurements decrease, which could lead to the under estimations of roughness and, consequently, discontinuity shear strength.
183

The Effect of Woodpecker Damage on the Reliability of Wood Utility Poles

Daigle, Olivier January 2013 (has links)
Hydro One, a major distribution of electricity in Ontario, has reported that approximately 16,000 of the wood utility poles in its network of two million poles have been damaged by woodpeckers. With a cost of replacement of approximately $4000 per pole, replacing all affected poles is an expensive enterprise. Previous research conducted at UW attempted to quantify how different levels of woodpecker damage affected the pole strength. In the course of this research, some shear failures were observed. Utility poles being slender cantilevered structures, failures in shear are not expected. The objectives of this study were to determine the effective shear strength of wood utility poles and to determine the reliability of wood utility poles under different configurations, including poles that had been damaged by woodpeckers. An experimental programme was developed and conducted to determine the effective shear strength of wood poles. Red Pine wood pole stubs were used for this purpose. The stubs were slotted with two transverse half-depth cuts parallel to one another but with openings in opposite directions. A shear plane was formed between these two slots. The specimens were loaded longitudinally and the failure load was recorded and divided by the failure plane area to determine the shear strength. The moisture content of each specimen was recorded and used to normalize each data point to 12 % moisture content. The experimental study showed that the mean shear strength of the Red Pine specimens adjusted to 12 % moisture content was 2014 kPa (COV 47.5 %) when calculated using gross shear area, and 2113 kPa (COV 40.5 %) when calculated using net area. The shear strength of full-size pole specimens can be represented using a log-normal distribution with a scale parameter of λ = 0.5909 and a shape parameter of ζ = 0.5265. iii The reliability of Red Pine wood utility poles was determined analytically. A structural analysis model was developed using Visual Basic for Applications in Excel and used in conjunction with Monte Carlo simulation. Statistical distribution parameters for wind loads and ice accretion for the Thunder Bay, Ontario region were obtained from literature. Similarly, statistical data were obtained for the modulus of rupture and shear strength from previous research conducted at UW as well as the experimental programme conducted in this research. The effects of various properties on reliability were tested parametrically. Tested parameters included the height of poles above ground, construction grade, end- of-life criterion, and various levels of woodpecker damage. To evaluate the results of the analysis, the calculated reliability levels were compared to the annual reliability level of 98 % suggested in CAN/CSA-C22.3 No. 60826. Results of this reliability study showed that taller poles tend to have lower reliability than shorter ones, likely due to second-order effects having a greater influence on taller poles. The Construction Grade, a factor which dictates the load factors used during design, has a significant impact on the reliability of wood utility pole, with poles designed using Construction Grade 3 having a reliability level below the 98 % threshold. Poles designed based on Construction Grade 2 and 3 having reached the end-of-life criterion (60 % remaining strength) had reliability below this threshold whilst CG1-designed pole reliability remained above it. Wood poles with exploratory- and feeding-level woodpecker damage were found to have an acceptable level of reliability. Those with nesting-level damage had reliability below the suggested limits. Poles with feeding and nesting damage showed an increase in shear failure. The number of observed shear failure depended on the orientation of the damage. Woodpecker damage with the opening oriented with the neutral axis (i.e., the opening perpendicular to the direction of loading) produced a greater number of shear failure compared to woodpecker damage oriented with the extreme bending fibres.
184

Development of liquefaction susceptibility and hazard maps for the islands of Jamaica and Trinidad

Kraft, Jason Edmund 09 April 2013 (has links)
Caribbean nations lie within a zone of distinct seismic hazard. While ground motion in the region has been analyzed, the potential for liquefaction has not been evaluated in most cases. In order to evaluate liquefaction, data describing soil composition, surficial geology, and seismic hazard analyses were collected and applied. This allowed for expansion of previously localized liquefaction analysis to be expanded to the extents of two island nations in the Caribbean. This thesis utilizes the Youd and Perkins (1978) qualitative liquefaction susceptibility and Holzer et al. (2011) liquefaction probability methodologies to evaluate the possibility of liquefaction in Trinidad and Jamaica during major seismic events. Maps were developed using geographic information system (GIS) data to compare susceptibility and hazard across the islands at varying levels of magnitude. In this way, the distribution of liquefiable deposits is displayed in a manner that can be used quickly and easily to motivate further study of susceptible regions and mitigation activities to reduce the risk posed by liquefaction in the countries.
185

A method for measuring smooth geomembrane/soil interface shear behaviour under unsaturated conditions

Jogi, Manoj 12 December 2005 (has links)
Geomembranes are one of the most widely used geosynthetics in various civil engineering applications. Their primary function is as a barrier to liquid or vapour flow. Smooth Geomembranes are frequently used in combination with different soils, and due to their low surface roughness, are challenging to design to ensure adequate shear strength along the smooth geomembrane-soil interface. It is important to use the appropriate values of interface shear strength parameters in the design of slopes incorporating one or more geomembranes in contact with soils. The parameters are determined by conducting direct shear test on the geomembrane-soil interface. Laboratory tests of interface shear strength for geomembranes and soil are typically carried out with no provision for measurement of pore pressures at the soil/geomembrane interface. <p>This thesis deals with study of smooth geomembrane-soil interfaces, particularly under unsaturated conditions. The various factors that affect the interface shear behaviour are also studied. The tests were conducted using a modified direct shear box with a miniature pore pressure transducer installed adjacent to the surface of the geomembrane. Geomembranesoil interface shear tests were carried out with continuous measurement of suction in close proximity to the interface during the shearing process thus making it possible to analyze test results in terms of effective stresses. The method was found to be suitable for unsaturated soils at low values of matric suction. <p>Results of interface shear tests conducted using this method show that it is quite effective in evaluating interface shear behaviour between a geomembrane and an unsaturated soil. The results suggest that soil suction contributes to shearing resistance at low normal stress values. At lower normal stress values, the interface shear behaviour appears to be governed only by the magnitude of total normal stress. <p> At high normal stresses, the failure mechanism changed from soil particles sliding at the surface of geomembrane to soil particles getting embedded into the geomembrane and plowing trenches along the direction of shear. A plowing failure mechanism resulted in the mobilization of significantly higher shear strength at the geomembrane soil interface. It was found that placement water contents near saturated conditions results in lower effective stresses, a shallower plowing mechanism and lower values of mobilized interface shear strength.
186

A Study on the Ball Shear Test of Sn-Ag-Cu and Sn-Pb Solder Balls

Chiu, Wen-Chun 08 September 2004 (has links)
In this thesis, the relation between shear load and displacement for the lead-free solder (Sn3.0Ag0.5Cu) and the tin-lead solder (63Sn37Pb) are investigated. Except that, a new shear strength of the solder balls is suggested with considering the plastic strain energy of the solder balls. Three diameters of the Sn/Ag/Cu and Sn/Pb solder balls are studied. The variation of the plastic strain energies for the balls undergone different number of thermal cycles is compared. The effect of high temperature aging on the shear strength is also discussed. The difference between the failure fractures of the Sn/Ag/Cu and Sn/Pb solder ball are executed by using SEM. The experimental results show that the failure mechanism for the Sn/Ag/Cu is quite different from the Sn/Pb solder ball. Generally, the lead-free Sn/Ag/Cu solder is much ductile than the Sn/Pb solder ball in the shear test. Also the better fatigue performances are observed for the Sn/Ag/Cu solder balls.
187

Kayma direnç parametrelerinin sismik hızlar ile belirlenmesi /

Çekmen, Veysel. Uyanık, Osman. January 2009 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Jeofizik Mühendisliği Anabilim Dalı, 2009. / Kaynakça var.
188

Shear behaviour of continuous concrete beams reinforced with GFRP bars

Mahmoud, Karam Abdou Awad 26 November 2015 (has links)
Continuous beams represent main structural elements in most reinforced concrete (RC) structures such as parking garages and overpass bridges. Deterioration of such structures due to corrosion of steel reinforcement is common in North America. To overcome the corrosion problems, the use of fiber-reinforced polymer (FRP) bars and stirrups becomes a viable alternative to steel reinforcement. However, to date, the shear behaviour of FRP-RC continuous beams has not been explored yet. As such, the objective of this study is to investigate the shear behaviour of such beams. In this study, twenty four full-scale continuous concrete beams were constructed and tested. The test beams had rectangular cross section with 200-mm width and a height of 300, 550 or 850 mm and were continuous over two equal spans. The main investigated parameters were concrete strength, type and ratio of longitudinal reinforcement, type and ratio of transverse reinforcement and beam effective depth. Moreover, a 3-D nonlinear finite element model (FEM) was constructed to simulate the behaviour of FRP-RC continuous beams. The model was verified against the experimental results and validated against test results from previous studies. Then, the verified/validated model was used to conduct a parametric study to investigate the effect of a wide range of the parameters on the shear behaviour of GFRP-RC beams. The experimental and FEM results showed that shear-critical GFRP-RC continuous beams exhibited moment redistribution. Also, it was observed that increasing the concrete strength and the longitudinal reinforcement ratio increased the shear strength significantly. Moreover, the presence of GFRP stirrups significantly enhanced the shear strength of the tested beams. Regarding the size effect, test results showed that there was adverse or no size effect on the shear strength of GFRP-RC continuous beams when they failed in the interior shear span while beams failed in the exterior shear span exhibited clear size effect. Furthermore, a comparison between the test results and the provisions of the available models and FRP standards and design guidelines in North America revealed that these design provisions can be safely applied to continuous beams. / February 2016
189

Experimental testing of pure translation and rotation loading of drag anchors

Ganjoo, Karan 21 December 2010 (has links)
Mobile offshore drilling units are being used in the Gulf of Mexico to produce oil and gas. Anchoring systems such as drag embedment anchors and vertically loaded anchors are used to keep these units in place. Past mooring system failures due to hurricanes in 2004 and 2005 initiated a need to better understand the performance of these anchors to in-plane and out-of-plane loading conditions. In-plane and out-of-plane loading cause the anchor to translate or rotate in the directions of its six degrees of freedom. Behavior and holding capacity of the anchors when loaded in each of is six degrees of freedom are important in understanding and predicting their behavior. An experimental program was devised to investigate the behavior of anchors in pure translation and rotation loading. The scaled-model anchors were embedded at a measured depth in a soil bed of clay with an undrained shear strength between 10 and 20 psf and then loaded to failure. A rotation testing frame was designed to impose rotational loading in the yaw, roll and pitch directions. Test results from the experimental program are consistent and repeatable. The bearing factors for pure bearing fell well within the range of existing experimental and analytical studies on simple plates. Bearing factors for in-plane and out-of-plane shear and for all rotations are higher than those for simple plates due to presence of the shank. When the resistance is normalized by area of the fluke, the wider model provide greater normalized resistance to yawing, similar normalized resistance to pitching and rolling and less normalized resistance to bearing and shearing. It was concluded that the holding capacity of an anchor in its six degrees of freedom depends largely on its geometry, including the fluke and the shank. / text
190

Analysis of spatial variability in geotechnical data for offshore foundations

Cheon, Jeong Yeon 31 January 2011 (has links)
Deep foundations, such as piles and suction caissons, are used throughout an offshore oil and gas production facility in deepwater. Ideally, the values of geotechnical properties for foundation design are determined by results from geotechnical investigation programs performed at the site of the foundation. However, the locations for facilities are not known exactly when soil borings are drilled and the footprint of a facility in deepwater can be very large with numerous foundation elements spread out over miles. Therefore, it is not generally feasible to perform a site-specific investigation for every foundation element. The objective of this research is to assess, analyze and model spatial variability in geotechnical properties for offshore foundations. A total of 97 geotechnical investigations from 14 offshore project sites covering the past twenty years of deepwater development in the Gulf of Mexico are compiled into a database. The geologic setting is primarily a normally to slightly overconsolidated marine clay, and the property of interest for the design of deep foundations is the undrained shear strength. The magnitude and characteristics of variability in design undrained shear strengths are analyzed quantitatively and graphically. Geostatistical models that describe spatial variability in the design shear strength properties to the distance away from the available information are developed and calibrated with available information from the database. Finally, a methodology is presented for incorporating the models into a reliability-based design framework to account for spatial variability in foundation capacity. Design examples are presented to demonstrate the use of the reliability methodology. Based on the design undrained shear strength profiles for the past 20 years in this Gulf of Mexico deepwater area, the design undrained shear strength varies spatially but does not depend on the time or method for site investigations. There are nonlinear spatial relationships in the point shear strength laterally and vertically due to stratigraphy such that depth-averaged shear strengths are correlated over further distances than point shear strengths. The depositional forces are an important factor causing spatial variations in the undrained shear strength, with greater variation and less spatial correlation in the more recent hemipelagic deposits (about upper 60 feet) than the deeper turbidite deposits and along the shelf versus off the shelf. The increased conservatism required in deep foundation design due to spatial variability when site specific strength data are not available is generally small with less than a five percent increase required in design capacity in this geologic setting. / text

Page generated in 0.0398 seconds