• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 28
  • 15
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 26
  • 23
  • 20
  • 19
  • 18
  • 17
  • 17
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Výroba držáku antény sdruženým nástrojem / The Antenna Bracket Manufacturing by a Compound Tool

Lipka, Ondřej January 2015 (has links)
This master’s thesis focuses on the concept of large-lot manufacturing of sheet metal component made from DC01 steel. Based on forethought, the method of compound tool combining shearing and bending was chosen. The theoretical part analyses used technologies in detail. In the next part specific course of manufacture was created and supplied with technological calculations. Based on all needed facts the tool was designed and after that forming machine, LDC 160 crank press, was chosen. At the end the usability of designed concept was confirmed with economical calculations.
82

Výroba konektoru / Production of connector

Kočka, Jiří January 2014 (has links)
The diploma thesis deal with the proposal of connector manufacturing from bronze sheet CuSn6, thickness 1.5mm in production volume of 1.600.000 parts per year. From considered manufacturing variants there was chosen shearing and forming technology of thread in the progressive stamping die. For part production was selected pressing machine Bruderer 1250 with nominal pressing force 1250 kN from company E. Bruderer Maschinenfabrik AG. In the economical evaluation there were determined expenses 21.6 Kč per one piece including demanded profit. The turning point was calculated at production of 165.522 parts.
83

A SIMULATION WITH FINITE ELEMENTS TO MODEL STEEL SHEET SLITTING : A Master Thesis in Engineering Physics

Ahlgren Peters, Adam January 2019 (has links)
A steel slitting process is simulated using FEM (Finite Element Method) in order to see potential defects along the edge in a steel sheet after it has been cut. The model's results were compared to microscope images of the steel sheet in order to verify accuracy. The purpose is conceptual and to find a model that successfully simulates a steel cutting process and (hopefully) how the edge depends on different parameters. The model developed seems to achieve this task, and a more thorough calibration of the model could result in (more) optimal parameters for the machine to use.
84

Avaliação do uso de solos não convencionais em estruturas de solo reforçado / Evaluation of the use of the marginal soils in reinforced soil structures

Patias, Josiele 27 May 2005 (has links)
As estruturas de solo reforçado tornaram-se uma alternativa eficiente para a construção de aterros e muros de contenção. No entanto, o seu uso é limitado pelas especificações técnicas, que recomendam apenas materiais granulares, por apresentarem alta resistência e capacidade de livre drenagem. Todavia, nem sempre se dispõem deste tipo de material nas proximidades das obras, o que pode torná-las onerosas, devido aos custos de transporte. Os solos não convencionais, definidos como solos de granulometria fina (caracterizados como argilas, siltes, e solos areno-siltosos), merecem atenção, pois são encontrados em abundância em muitos locais do nosso território. Casos históricos brasileiros de obras instrumentadas revelam a eficiência destes materiais na composição de aterros de estruturas de solo reforçado, devido ao bom desempenho técnico ao longo de sua vida útil. Acredita-se que o uso de inclusões permeáveis possa contribuir na aceleração da drenagem da água das camadas de maciços construídos com solos finos, permitindo a dissipação mais rápida do excesso de pressões neutras. Para elucidar estas questões foram realizados ensaios de compressão triaxial rápidos (UU) e adensados rápidos (CU), com o intuito de avaliar o desempenho de solos não convencionais reforçados com inclusões permeáveis e impermeáveis. Utilizaram-se como reforços papel alumínio (reforço inextensível e impermeável) e geotêxtil (reforço extensível e permeável), o que permitiu comparações dos resultados obtidos dos ensaios com corpos de prova reforçados com os obtidos de corpos de prova não reforçados. Os solos utilizados foram duas argilas silto-arenosas, uma de comportamento laterítico e a outra não laterítico e uma areia fina com aproximadamente 40% de finos (material com diâmetro inferior à peneira 200), com comportamento não laterítico. Verificou-se que a combinação de solos finos com reforços permeáveis resultou num ganho de resistência ora em termos de ângulo de atrito interno, ora em relação à coesão, apenas a areia fina obteve ganho de resistência ao ser reforçada com o papel alumínio. Observou-se que a argila silto-arenosa, com comportamento laterítico, e a areia fina apresentaram uma interação mais eficiente com os reforços de geotêxtil. Constatou-se ainda que os reforços permeáveis promoveram a drenagem da água dos corpos de prova / The reinforced soil structures became an efficient alternative for the construction of embankments and retaining walls. However, the use of these structures are limited by design specifications which recommend the use of granular materials that present high shearing strength and free drainage capacity. Some granular soils are not always available in the proximities of works, in these cases, costs of transportation can be high. The marginal soils, defined as fine grain-size (characterized as clays, silts, and sandy-silty) soils, deserve attention because they are found in abundance in many places on our territory, besides that, brazilian historical cases of instrumented structures have shown their efficiency when used as backfill of reinforced soil structures. It is also believed that the use of permeable inclusions can contribute to the acceleration of water drainage, which allows faster dissipation of pore pressure. To contribute to the understanding of these aspects of reinforced soil behavior, triaxial compression tests, unconsolidated-undrained (UU) and consolidated-undrained (CU), were carried out in order to check the performance of reinforced marginal soil when reinforced with permeable and impermeable inclusions. Aluminum foil (inextensible and impermeable reinforcement) and geotextile (extensible and permeable reinforcement) were used as reinforcement, allowing the comparison of results of tests using reinforced and non-reinforced samples. The soils used were two sandy silty clays - a lateritic and a non-lateritic soil - and fine sand with 40% of fines, presenting non-lateritic behavior. It was verified that the combination of cohesive soil and permeable reinforcements resulted on an increase of resistance parameters, angle of internal friction and cohesion. It was observed that the lateritic sandy silty clay and the fine sand presented more efficient interaction with the geotextile reinforcements. Also, it was verified that the permeable reinforcements promoted faster water drainage
85

Numerical Methods for Simulating the Metal Shearing Process : A Novel Numerical Model for the Punching of Metals

Svanberg, Andreas January 2019 (has links)
When dealing with the separation of materials, the metal shearing process such as punching, is widely used in theindustry due to its time efficient manner. There is however, a need to better understand the process in order toimprove quality of the final product. Working with numerical simulations of themetal shearing process, there aretwo major difficulties. One being the extremely large deformation, the other being material failure. The combinationof these two makes numerical modeling challenging and is the reason for this study.The problem was divided in to two main parts, one where material modeling was studied, the other part focusedon numerical modeling and experiments of the punching process. A material model considering both plasticityandmaterial failure was created for a boron steel material. Plasticity behavior of thematerial was modeled with anelasto-plastic model and a calibratedModifiedMohr-Coulomb (MMC) failure criterion to model the material failure.The resultingMMC-model agreed well with the experiments.Punching experiments with varying clearances were performed on the boron steel. Punch forces and displacementswere continuously sampled throughout the process, and after the punching experiments were finished the punchededge profiles were studied. The multiphysics simulation software LS-DYNA was then utilized, and three dimensionalsimulations of the punching process using the Smoothed Particle Galerkin (SPG)method were performed.Results from the SPG-simulation corresponded very well with the results from punching experiments, and it can beconcluded that the model was able to capture the material behavior of the sheet in a highly detailed level. When thepunched edge profiles from the simulations were compared to the experiments, there was an almost exact match forall the cases studied. The force-displacement behavior of the punch from simulations was in great consistency withexperimental results as well.Itwas also concluded that the combination of a stress state dependent failure criterion together with the SPG-methodshows significant possibilities to cope with three dimensional problems where large deformations in combinationwith difficultmaterial failure occurs. This study focuses on the punching process, but the generality of this novelmodeling technique can be applied to many industrial cases and is a step towards a better and more reliablemodeling of failure in combination with extremely large deformation.
86

Contribution à l'étude de la réduction formelle des systèmes différentiels méromorphes linéaires

Abbas, Hassane 01 September 1993 (has links) (PDF)
Cette thèse est consacrée au calcul des solutions formelles d'un système différentiel linéaire méromorphe dans un voisinage de l'origine de c de la forme y(z)=a(z)y(z). Il est bien connu qu'une matrice fondamentale de solutions s'écrit formellement sous forme h(z)=f(z)g(z), ou f(z) est une série formelle en racine de z et g(z) est une matrice de fonctions élémentaires qui constituent des exponentiels polynomiaux en racine de z#1, puissance complexe de z##1, et puissance entière positive de log z. H. L. Turrittin et w. Wasow ont propose une methode algorithmique pour calculer h(z). Cette methode coute chére en calcul. Devant ce fait, nous proposons une nouvelle approche algorithmique pour trouver h(z). Cette approche a l'avantage d'utiliser des transformations simples et moins couteuses en calcul. De plus, notre approche permet de calculer le plus grand degré des polynômes exponentiels qui se trouvent dans la matrice g(z). En pratique, les systèmes a deux dimensions sont importants. Dans ce cas, nous proposons une methode programmable, inspirée de l'approche générale précédente pour calculer les solutions au voisinage d'une singularité
87

Solutions formelles de systèmes d'équations différentielles ordinaires linéaires homogènes

Chen, Guoting 09 February 1990 (has links) (PDF)
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions formelles des systèmes d'équations différentielles linéaires ordinaires dépendant (ou pas) d'un paramètre et opérations fondamentales pour les opérateurs différentiels. Dans la première partie: nous avons démontre la convergence d'un algorithme et développe un programme en macsyma pour le calcul de la forme de Frobenius et Jordan de matrices holomorphes. Nous avons aussi développé un algorithme et un programme en macsyma pour le calcul de formes de Arnold-Wasow de matrices et systèmes différentiels dépendant d'un paramètre. Grâce a ces algorithmes, l'algorithme de Turrittin-Wasow est adapte au calcul formel pour trouver les solutions formelles de systemes differentiels dépendant d'un paramétré. Nous avons developpe un programme en macsyma pour le calcul de solutions formelles de systèmes différentiels dans un voisinage du point singulier régulier. Dans la deuxième partie: nous avons développe des algorithmes pour des opérations fondamentales sur deux opérateurs différentiels: le plus grand commun diviseur, le plus petit commun multiples, l'algorithme de Bezout, le pseudo-résultant. Nous avons aussi étudie une généralisation directe de la notion de base de Grobner dans l'anneau des opérateurs différentiels a coefficients polynomiaux, i.e. L'algèbre de Weyl
88

Progressive-Failure Analysis of Steel Building Structures under Abnormal Loads

Liu, Yuxin 30 March 2007 (has links)
Engineered structures are designed to resist all expected loadings without failure. However, structural failures do occasionally occur due to inadequate design and construction, especially for extreme and abnormal loads. This thesis concerns the progressive collapse of structures due to abnormal loading events, and develops a method of advanced analysis for predicting the progressive collapse behaviour of building structures in the plastic limit state. Combined-stress failure states and stiffness degradation models are proposed to simulate plastic deformation of structural members. Elliptic force-deformation relationships are employed to model the nonlinear material behaviour of members. The stiffness degradation of semirigid connections is modeled by a moment-rotation relationship with four parameters. Having the proposed nonlinear model, a generic member stiffness matrix is derived taking into account elastic-plastic bending, shearing and axial deformations. A computer-based incremental-load nonlinear analysis procedure is developed that progressively updates member stiffness using reduction factors that simulate degraded stiffness behaviour. Three types of localized damage modes are investigated to identify different connection damage scenarios. Account is taken of any debris loading that occurs when disengaged structural components fall onto lower parts of the structure. The associated dynamic effect is taken into account for the quasi-static analysis by utilizing an impact amplification factor. Any progressive collapse occurring thereafter involves a series of failure events associated with topological changes. The progressive-failure analysis procedure is based on the alternate-load-path method suggested in the design and analysis guidelines of the General Services of Administration (GSA, 2003) and the Department of Defense (DoD, 2005). The residual load carrying capacity of the damaged framework is analyzed by incrementally applying prevailing long-term loads and impact debris loads. The deterioration of structural strength is progressively traced to the state at which either global stability is reached or progressive collapse to ground level occurs for part or all of the structure. The analysis procedure is extensively illustrated for several planar steel moment frames, including account for the influence of damaged connections and semi-rigid connection behaviour. The results obtained demonstrate that the proposed method is potentially a powerful tool for the analysis of steel building structures under normal and abnormal loads.
89

Progressive-Failure Analysis of Steel Building Structures under Abnormal Loads

Liu, Yuxin 30 March 2007 (has links)
Engineered structures are designed to resist all expected loadings without failure. However, structural failures do occasionally occur due to inadequate design and construction, especially for extreme and abnormal loads. This thesis concerns the progressive collapse of structures due to abnormal loading events, and develops a method of advanced analysis for predicting the progressive collapse behaviour of building structures in the plastic limit state. Combined-stress failure states and stiffness degradation models are proposed to simulate plastic deformation of structural members. Elliptic force-deformation relationships are employed to model the nonlinear material behaviour of members. The stiffness degradation of semirigid connections is modeled by a moment-rotation relationship with four parameters. Having the proposed nonlinear model, a generic member stiffness matrix is derived taking into account elastic-plastic bending, shearing and axial deformations. A computer-based incremental-load nonlinear analysis procedure is developed that progressively updates member stiffness using reduction factors that simulate degraded stiffness behaviour. Three types of localized damage modes are investigated to identify different connection damage scenarios. Account is taken of any debris loading that occurs when disengaged structural components fall onto lower parts of the structure. The associated dynamic effect is taken into account for the quasi-static analysis by utilizing an impact amplification factor. Any progressive collapse occurring thereafter involves a series of failure events associated with topological changes. The progressive-failure analysis procedure is based on the alternate-load-path method suggested in the design and analysis guidelines of the General Services of Administration (GSA, 2003) and the Department of Defense (DoD, 2005). The residual load carrying capacity of the damaged framework is analyzed by incrementally applying prevailing long-term loads and impact debris loads. The deterioration of structural strength is progressively traced to the state at which either global stability is reached or progressive collapse to ground level occurs for part or all of the structure. The analysis procedure is extensively illustrated for several planar steel moment frames, including account for the influence of damaged connections and semi-rigid connection behaviour. The results obtained demonstrate that the proposed method is potentially a powerful tool for the analysis of steel building structures under normal and abnormal loads.
90

Avaliação do uso de solos não convencionais em estruturas de solo reforçado / Evaluation of the use of the marginal soils in reinforced soil structures

Josiele Patias 27 May 2005 (has links)
As estruturas de solo reforçado tornaram-se uma alternativa eficiente para a construção de aterros e muros de contenção. No entanto, o seu uso é limitado pelas especificações técnicas, que recomendam apenas materiais granulares, por apresentarem alta resistência e capacidade de livre drenagem. Todavia, nem sempre se dispõem deste tipo de material nas proximidades das obras, o que pode torná-las onerosas, devido aos custos de transporte. Os solos não convencionais, definidos como solos de granulometria fina (caracterizados como argilas, siltes, e solos areno-siltosos), merecem atenção, pois são encontrados em abundância em muitos locais do nosso território. Casos históricos brasileiros de obras instrumentadas revelam a eficiência destes materiais na composição de aterros de estruturas de solo reforçado, devido ao bom desempenho técnico ao longo de sua vida útil. Acredita-se que o uso de inclusões permeáveis possa contribuir na aceleração da drenagem da água das camadas de maciços construídos com solos finos, permitindo a dissipação mais rápida do excesso de pressões neutras. Para elucidar estas questões foram realizados ensaios de compressão triaxial rápidos (UU) e adensados rápidos (CU), com o intuito de avaliar o desempenho de solos não convencionais reforçados com inclusões permeáveis e impermeáveis. Utilizaram-se como reforços papel alumínio (reforço inextensível e impermeável) e geotêxtil (reforço extensível e permeável), o que permitiu comparações dos resultados obtidos dos ensaios com corpos de prova reforçados com os obtidos de corpos de prova não reforçados. Os solos utilizados foram duas argilas silto-arenosas, uma de comportamento laterítico e a outra não laterítico e uma areia fina com aproximadamente 40% de finos (material com diâmetro inferior à peneira 200), com comportamento não laterítico. Verificou-se que a combinação de solos finos com reforços permeáveis resultou num ganho de resistência ora em termos de ângulo de atrito interno, ora em relação à coesão, apenas a areia fina obteve ganho de resistência ao ser reforçada com o papel alumínio. Observou-se que a argila silto-arenosa, com comportamento laterítico, e a areia fina apresentaram uma interação mais eficiente com os reforços de geotêxtil. Constatou-se ainda que os reforços permeáveis promoveram a drenagem da água dos corpos de prova / The reinforced soil structures became an efficient alternative for the construction of embankments and retaining walls. However, the use of these structures are limited by design specifications which recommend the use of granular materials that present high shearing strength and free drainage capacity. Some granular soils are not always available in the proximities of works, in these cases, costs of transportation can be high. The marginal soils, defined as fine grain-size (characterized as clays, silts, and sandy-silty) soils, deserve attention because they are found in abundance in many places on our territory, besides that, brazilian historical cases of instrumented structures have shown their efficiency when used as backfill of reinforced soil structures. It is also believed that the use of permeable inclusions can contribute to the acceleration of water drainage, which allows faster dissipation of pore pressure. To contribute to the understanding of these aspects of reinforced soil behavior, triaxial compression tests, unconsolidated-undrained (UU) and consolidated-undrained (CU), were carried out in order to check the performance of reinforced marginal soil when reinforced with permeable and impermeable inclusions. Aluminum foil (inextensible and impermeable reinforcement) and geotextile (extensible and permeable reinforcement) were used as reinforcement, allowing the comparison of results of tests using reinforced and non-reinforced samples. The soils used were two sandy silty clays - a lateritic and a non-lateritic soil - and fine sand with 40% of fines, presenting non-lateritic behavior. It was verified that the combination of cohesive soil and permeable reinforcements resulted on an increase of resistance parameters, angle of internal friction and cohesion. It was observed that the lateritic sandy silty clay and the fine sand presented more efficient interaction with the geotextile reinforcements. Also, it was verified that the permeable reinforcements promoted faster water drainage

Page generated in 0.0505 seconds