Spelling suggestions: "subject:"shock waves"" "subject:"chock waves""
181 |
Analysis and numerical methods for conservation laws. / CUHK electronic theses & dissertations collectionJanuary 2002 (has links)
Ye Mao. / "May 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 116-123). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
182 |
Asymptotic behavior of solutions to some systems of conservation laws. / CUHK electronic theses & dissertations collectionJanuary 2002 (has links)
Wang Hui Ying. / "June 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 67-72). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
183 |
Feasibility and design of blast mitigation systems for naval applications using water mist fire suppression systemsKitchenka, Julie A January 2004 (has links)
Thesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004. / Includes bibliographical references (leaves 73-76). / The recent trend of using fine water mist systems to replace the legacy HALON- 1301 fire suppression systems warrants further study into other applications of the water mist systems. Preliminary research and investigation indicates that fine mists (20-25 pm droplet size) may reduce peak overpressures of a shock wave traveling through a space. Such pressure reductions could be used to mitigate the destructive effects of a shock wave (initiated by an explosive device) traveling through a structure. Currently these blast mitigation effects have only been demonstrated in small-scale shock tube tests and computer simulations. Uncertainty exists as to the scalability of such a system. The intention of this research is to investigate the applicability of such a blast mitigation system for shipboard use. Study into the degree of mitigation necessary to make a system practical for shipboard installation was conducted. In addition, a theoretical study of the mechanisms of blast mitigation using water mists was completed. Preliminary design of a full-scale system was examined. / (cont.) Given the recent trend toward tumblehome hull forms in future Naval Combatant designs, there exists strong applicability of this system in the "dead" spaces created by the shaping of the tumblehome hull. Further work is needed in numerical modeling and laboratory testing of specific phases of the mitigation. The end goal is a feasible design of a blast mitigation system to be used in the outermost spaces of Naval Combatants to protect interior vital system spaces. / by Julie A. Kitchenka. / S.M. / Nav.E.
|
184 |
Multi-dimensional conservation laws and a transonic shock problem.January 2009 (has links)
Weng, Shangkun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (p. 73-78). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Existence and Uniqueness results of transonic shock solution to full Euler system in a large variable nozzle --- p.11 / Chapter 2.1 --- The mathematical description of the transonic shock problem and main results --- p.11 / Chapter 2.2 --- The reformulation on problem (2.1.1) with (2.1.5)-(2.1.9) --- p.18 / Chapter 2.3 --- An Iteration Scheme --- p.30 / Chapter 2.4 --- A priori estimates and proofs of Theorem 2.2.1 and Theorem 2.1.1 --- p.39 / Chapter 3 --- A monotonic theorem on the shock position with respect to the exit pressure --- p.50 / Chapter 4 --- Discussions and Future work --- p.64 / Chapter 5 --- Appendix --- p.66 / Chapter 5.1 --- Appendix A: Background solution --- p.66 / Chapter 5.2 --- Appendix B: An outline of the proof of Theorem 2.1.2 --- p.67
|
185 |
Immersed-interface methods in the presence of shock waves / Métodos de interface imersa na presença de ondas de choqueAuríchio, Vinícius Henrique 03 May 2019 (has links)
Fluid motion has always been of great importance for humanity since much of our progress has been related to our understanding of fluid dynamics and to our control over the fluids surrounding us. In particular, the experimental techniques and the methods for numerical simulation developed during the last century allowed for great progresses both in creating new technologies and in improving old ones. Despite the great importance of experimental techniques, measuring all properties of a fluid throughout the whole domain, without intefering with the flow to be studied, is impossible. Also, building models even in scale is usually expansive. Both of these reasons have driven the development of numerical methods to the point they became an invaluable tool for fluid dynamic studies and the main tool for developing engineering solutions. If numerical methods are to be of any use, though, they have to correctly describe the problem geometry as well as capture the rich dynamics in a variety of flow situations, such as turbulence, boundary-layers and shock-waves. This thesis addresses two of these problems. In particular, I show modified versions of two immersed-interface methods to describe the geometry, simplifying their implementations with no impact to their applicability. I also introduce two methods for handling shock-waves: first aiming to minimize computational costs, then improving shock-wave resolution without increasing the number of grid points. / O movimento dos fluidos sempre foi de grande importância para a humanidade, dado que muito de nosso progresso esteve intimamente relacionado a um entendimento mais profundo de fluidodinâmica e de como controlar os flúidos ao nosso redor. Em particular, os métodos experimentais e de simulação computacional, desenvolvidos no último século, nos permitiram grandes avanços na criação de novas tecnologias e na otimização das já existentes. Apesar de sua grande importância, as dificuldades de se mensurar todas as propriedades de um flúido em todo o espaço, sem interferir com o comportamento do fluxo, além dos custos de se elaborar experimentos em tamanho real ou em escala, fez com que cada vez mais os métodos numéricos se tornassem uma importante ferramenta no estudo da fluido dinâmica e a principal ferramenta para o desenvolvimento de soluções de engenharia. Porém, para efetivamente substituir experimentos, os métodos numéricos tem que ser capazes de corretamente descrever a geometria do problema, além de capturarem todo tipo de comportamento apresentado pelos flúidos, como turbulência, camada limite e ondas de choque. Esta tese busca contribuir com dois destes desafios. Em particular, mostro versões modificadas de métodos de interface imersa para a descrição da geometria, simplificando as implementações originais sem prejudicar sua aplicabilidade. Também abordo métodos para tratar ondas de choque: primeiro buscando minimizar o esforço computacional e depois buscando aumentar a resolução do choque sem precisar refinar a malha computacional.
|
186 |
The structural response of submerged air-backed plates to underwater explosionsHammond, Lloyd Charles, 1961- January 2000 (has links)
Abstract not available
|
187 |
Electron acceleration at localized wave structures in the solar coronaMiteva, Rositsa Stoycheva January 2007 (has links)
Our dynamic Sun manifests its activity by different phenomena: from the 11-year cyclic sunspot pattern to the unpredictable and violent explosions in the case of solar flares. During flares, a huge amount of the stored magnetic energy is suddenly released and a substantial part of this energy is carried by the energetic electrons, considered to be the source of the nonthermal radio and X-ray radiation. One of the most important and still open question in solar physics is how the electrons are accelerated up to high energies within (the observed in the radio emission) short time scales. Because the acceleration site is extremely small in spatial extent as well (compared to the solar radius), the electron acceleration is regarded as a local process. The search for localized wave structures in the solar corona that are able to accelerate electrons together with the theoretical and numerical description of the conditions and requirements for this process, is the aim of the dissertation.
Two models of electron acceleration in the solar corona are proposed in the dissertation:
I. Electron acceleration due to the solar jet interaction with the background coronal plasma (the jet--plasma interaction)
A jet is formed when the newly reconnected and highly curved magnetic field lines are relaxed by shooting plasma away from the reconnection site. Such jets, as observed in soft X-rays with the Yohkoh satellite, are spatially and temporally associated with beams of nonthermal electrons (in terms of the so-called type III metric radio bursts) propagating through the corona. A model that attempts to give an explanation for such observational facts is developed here. Initially, the interaction of such jets with the background plasma leads to an (ion-acoustic) instability associated with growing of electrostatic fluctuations in time for certain range of the jet initial velocity. During this process, any test electron that happen to feel this electrostatic wave field is drawn to co-move with the wave, gaining energy from it. When the jet speed has a value greater or lower than the one, required by the instability range, such wave excitation cannot be sustained and the process of electron energization (acceleration and/or
heating) ceases. Hence, the electrons can propagate further in the corona and be detected as type III radio burst, for example.
II. Electron acceleration due to attached whistler waves in the upstream region of coronal shocks (the electron--whistler--shock interaction)
Coronal shocks are also able to accelerate electrons, as observed by the so-called type II metric radio bursts (the radio signature of a shock wave in the corona). From in-situ observations in space, e.g., at shocks related to co-rotating interaction regions, it is known that nonthermal electrons are produced preferably at shocks with attached whistler wave packets in their upstream regions. Motivated by these observations and assuming that the physical processes at shocks are the same in the corona as in the interplanetary medium, a new model of electron acceleration at coronal shocks is presented in the dissertation, where the electrons are accelerated by their interaction with such whistlers. The protons inflowing toward the shock are reflected there by nearly conserving their magnetic moment, so that they get a substantial velocity gain in the case of a quasi-perpendicular shock geometry, i.e, the angle between the shock normal and the upstream magnetic field is in the range 50--80 degrees. The so-accelerated protons are able to excite whistler waves in a certain frequency range in the upstream region. When these whistlers (comprising the localized wave structure in this case) are formed, only the incoming electrons are now able to interact resonantly with them. But only a part of these electrons fulfill the the electron--whistler wave resonance condition. Due to such resonant interaction (i.e., of these electrons with the whistlers), the electrons are accelerated in the electric and magnetic wave field within just several whistler periods. While gaining energy from the whistler wave field, the electrons reach the shock front and, subsequently, a major part of them are reflected back into the upstream region, since the shock accompanied with a jump of the magnetic field acts as a magnetic mirror. Co-moving with the whistlers now, the reflected electrons are out of resonance and hence can propagate undisturbed into the far upstream region, where they are detected in terms of type II metric radio bursts.
In summary, the kinetic energy of protons is transfered into electrons by the action of localized wave structures in both cases, i.e., at jets outflowing from the magnetic reconnection site and at shock waves in the corona. / Die Sonne ist ein aktiver Stern, was sich nicht nur in den allseits bekannten Sonnenflecken, sondern auch in Flares manifestiert. Während Flares wird eine große Menge gespeicherter, magnetischer Energie in einer kurzen Zeit von einigen Sekunden bis zu wenigen Stunden in der Sonnenkorona freigesetzt. Dabei werden u.a. energiereiche Elektronen erzeugt, die ihrerseits nichtthermische Radio- und Röntgenstrahlung, wie sie z.B. am Observatorium für solare Radioastronomie des Astrophysikalischen Instituts Potsdam (AIP) in Tremsdorf und durch den NASA-Satelliten RHESSI beobachtet werden, erzeugen. Da diese Elektronen einen beträchtlichen Anteil der beim Flare freigesetzten Energie tragen, ist die Frage, wie Elektronen in kurzer Zeit auf hohe Energien in der Sonnenkorona beschleunigt werden, von generellem astrophysikalischen Interesse, da solche Prozesse auch in anderen Sternatmosphären und kosmischen Objekten, wie z.B. Supernova-Überresten, stattfinden.
In der vorliegenden Dissertation wird die Elektronenbeschleunigung an lokalen Wellenstrukturen im Plasma der Sonnenkorona untersucht. Solche Wellen treten in der Umgebung der magnetischen Rekonnektion, die als ein wichtiger Auslöser von Flares angesehen wird, und in der Nähe von Stoßwellen, die infolge von Flares erzeugt werden, auf. Generell werden die Elektronen als Testteilchen behandelt. Sie werden durch ihre Wechselwirkung mit den elektrischen und magnetischen Feldern, die mit den Plasmawellen verbunden sind, beschleunigt.
Infolge der magnetischen Rekonnektion als Grundlage des Flares werden starke Plasmaströmungen (sogenannte Jets) erzeugt. Solche Jets werden im Licht der weichen Röntgenstrahlung, wie z.B. durch den japanischen Satelliten YOHKOH, beobachtet. Mit solchen Jets sind solare Typ III Radiobursts als Signaturen von energiereichen Elektronenstrahlen in der Sonnenkorona verbunden. Durch die Wechselwirkung eines Jets mit dem umgebenden Plasma werden lokal elektrische Felder erzeugt, die ihrerseits Elektronen beschleunigen können. Dieses hier vorgestellte Szenarium kann sehr gut die Röntgen- und Radiobeobachtungen von Jets und den damit verbundenen Elektronenstrahlen erklären.
An koronalen Stoßwellen, die infolge Flares entstehen, werden Elektronen beschleunigt, deren Signatur man in der solaren Radiostrahlung in Form von sogenannten Typ II Bursts beobachten kann. Stoßwellen in kosmischen Plasmen können mit Whistlerwellen (ein spezieller Typ von Plasmawellen) verbunden sein. In der vorliegenden Arbeit wird ein Szenarium vorgestellt, das aufzeigt, wie solche Whistlerwellen an koronalen Stoßwellen erzeugt werden und durch ihre resonante Wechselwirkung mit den Elektronen dieselben beschleunigen. Dieser Prozess ist effizienter als bisher vorgeschlagene Mechanismen und kann deshalb auch auf andere Stoßwellen im Kosmos, wie z.B. an Supernova-Überresten, zur Erklärung der dort erzeugten Radio- und Röntgenstrahlung dienen.
|
188 |
The rebirth of Supernova 1987A : a study of the ejecta-ring collisionGröningsson, Per January 2008 (has links)
Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The high-ionization line profiles (Fe X-XIV) initially show larger spectral widths, which indicates that at least a fraction of the emission comes from non-radiative shocks.
|
189 |
Stability results for viscous shock waves and plane Couette flowLiefvendahl, Mattias January 2001 (has links)
No description available.
|
190 |
On Half-Space and Shock-Wave Problems for Discrete Velocity Models of the Boltzmann EquationBernhoff, Niclas January 2005 (has links)
We study some questions related to general discrete velocity (with arbitrarily number of velocities) models (DVMs) of the Boltzmann equation. In the case of plane stationary problems the typical DVM reduces to a dynamical system (system of ODEs). Properties of such systems are studied in the most general case. In particular, a topological classification of their singular points is made and dimensions of the corresponding stable, unstable and center manifolds are computed. These results are applied to typical half-space problems of rarefied gas dynamics, including the problems of Milne and Kramer. A classification of well-posed half-space problems for linearized DVMs is made. Exact solutions of a (simplified) linearized kinetic model of BGK type are found as a limiting case of the corresponding discrete models. Existence of solutions of weakly non-linear half-space problems for general DVMs are studied. The solutions are assumed to tend to an assigned Maxwellian at infinity, and the data for the outgoing particles at the boundary are assigned, possibly depending on the data for the incoming particles. The conditions, on the data at the boundary, needed for the existence of a unique (in a neighborhood of the assigned Maxwellian) solution of the problem are investigated. Both implicit, in the non-degenerate cases, and sometimes, in both degenerate and non-degenerate cases, explicit conditions are found. Shock-waves can be seen as heteroclinic orbits connecting two singular points (Maxwellians) for DVMs. We give a constructive proof for the existence of solutions of the shock-wave problem for the general DVM. This is worked out for shock speeds close to a typical speed, corresponding to the sound speed in the continuous case. We clarify how close the shock speed must be for our theorem to hold, and present an iteration scheme for obtaining the solution. The main results of the paper can be used for DVMs for mixtures as well as for DVMs for one species.
|
Page generated in 0.0609 seconds