Spelling suggestions: "subject:"designal transduction"" "subject:"absignal transduction""
531 |
Intracellular signaling mechanisms regulating the mast cell-mediated allergic inflammation.January 2007 (has links)
Ng Sin Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 120-135). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abbreviations --- p.iii / Abstract --- p.vi / 撮要 --- p.ix / Publications --- p.xi / Table of contents --- p.xiii / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Allergic Diseases and Allergic Inflammation --- p.1 / Chapter 1.1.1 --- Prevalence of Allergic Diseases --- p.1 / Chapter 1.1.2 --- Common Allergic Diseases: Allergic Asthma --- p.1 / Chapter 1.1.3 --- Common Allergic Diseases: Atopic Dermatitis --- p.2 / Chapter 1.1.4 --- Allergic Inflammation --- p.3 / Chapter 1.2 --- The Inflammatory Leukocytes: Mast Cells and Eosinophils --- p.6 / Chapter 1.2.1 --- Characteristics of Mast Cells --- p.6 / Chapter 1.2.2 --- Mast Cells Distribution --- p.8 / Chapter 1.2.3 --- Mast Cells Subtypes --- p.8 / Chapter 1.2.4 --- HMC-1 Cells --- p.9 / Chapter 1.2.5 --- Characteristics of Eosinophils --- p.12 / Chapter 1.3 --- Adhesion Molecules in Allergic Diseases --- p.15 / Chapter 1.3.1 --- Adhesion Molecules and Leukocyte Migration --- p.15 / Chapter 1.3.2 --- Selectin --- p.17 / Chapter 1.3.3 --- Intermolecular Adhesion Molecules --- p.17 / Chapter 1.3.4 --- Integrin --- p.18 / Chapter 1.4 --- Cytokines and Chemokines in Allergic Diseases --- p.18 / Chapter 1.4.1 --- IL-6 --- p.20 / Chapter 1.4.2 --- CXCL1 --- p.21 / Chapter 1.4.3 --- CXCL8 --- p.21 / Chapter 1.4.3 --- CCL2 --- p.22 / Chapter 1.5 --- Intercellular Signal Transduction Pathways in Inflammation --- p.24 / Chapter 1.5.1 --- RAS-RAF-mitogen-activated Protein Kinases --- p.24 / Chapter 1.5.2 --- Janus Kinase/ Signal Transducers and Activators of Transcriptions Pathway --- p.27 / Chapter 1.5.3 --- Nuclear Factor-KB Pathway --- p.29 / Chapter 1.5.4 --- Phosphoinositide 3-Kinase Pathway --- p.31 / Chapter 1.6 --- Aims and Scope of the Study --- p.33 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials --- p.35 / Chapter 2.1.1 --- HMC-1 Cell Line --- p.35 / Chapter 2.1.2 --- Human Buffer Coat --- p.35 / Chapter 2.1.3 --- Human Mast Cell Chymase and TLR ligands --- p.35 / Chapter 2.1.4 --- Media and Reagents for Cell Culture --- p.36 / Chapter 2.1.5 --- Reagents and Buffers for Purification of Human Eosinophils --- p.37 / Chapter 2.1.6 --- Reagents and Buffers for Flow Cytmetry --- p.38 / Chapter 2.1.7 --- Reagents and Buffers for Total RNA Extraction --- p.41 / Chapter 2.1.8 --- Reagents and Buffers for Reverse Transcription-Polymerase Chain Reaction (RT-PCR) --- p.42 / Chapter 2.1.9 --- Reagents and Buffers for Agarose Gel Electrophoresis --- p.45 / Chapter 2.1.10 --- Reagents and Buffers for Sodium Dodecyl Sulfate -polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.46 / Chapter 2.1.11 --- Reagents and Buffers for Western Blot Analysis --- p.48 / Chapter 2.1.12 --- Chemotactic Migration --- p.51 / Chapter 2.1.13 --- Signaling Transduction Inhibitors and Protein Synthesis Inhibitors --- p.51 / Chapter 2.2 --- Methods --- p.52 / Chapter 2.2.1 --- HMC-1 Cell Cultures --- p.52 / Chapter 2.2.2 --- Purification of Buffy Coat Eosinophils by MACS and Eosinophil Culture --- p.52 / Chapter 2.2.3 --- Total Cellular RNA Extraction --- p.53 / Chapter 2.2.4 --- RT-PCR --- p.54 / Chapter 2.2.5 --- Agarose Gel Electrophoresis --- p.55 / Chapter 2.2.6 --- Flow Cytometry Analysis --- p.55 / Chapter 2.2.7 --- Protein Array Analysis of Cytokine Release --- p.57 / Chapter 2.2.8 --- Quantitative Analysis ofCXCLl --- p.58 / Chapter 2.2.9 --- Total Protein Extraction --- p.58 / Chapter 2.2.10 --- SDS-PAGE --- p.58 / Chapter 2.2.11 --- Western Blot Analysis --- p.59 / Chapter 2.2.12 --- Chemotactic Migration Analysis --- p.60 / Chapter 2.2.13 --- Statistical Analysis --- p.60 / Chapter Chapter 3 --- Effects of Mast Cell Derived Chymase on Human Eosinophils and the Signaling Mechanisms: Implication in Allergic Inflammation / Chapter 3.1 --- Introduction --- p.61 / Chapter 3.2 --- Results --- p.65 / Chapter 3.2.1 --- Effects of Chymase on Eosinophil Survival --- p.65 / Chapter 3.2.2 --- Effects of Chymase on the Adhesion Molecule Expression of Eosinophils --- p.68 / Chapter 3.2.3 --- Effects of Chymase on the Chemokinetic Properties on Eosinophils --- p.71 / Chapter 3.2.4 --- Effects of Chymase on the Release of Chemokines and IL-6 from Eosinophils --- p.73 / Chapter 3.2.5 --- Signal Transduction Mechanism Involved in Regulating Chymase-induced Effects on Eosinophils --- p.78 / Chapter 3.3 --- Discussion --- p.71 / Chapter Chapter 4 --- TLR-mediated Effects and Signal Transduction Mechanism of HMC-1 Cells / Chapter 4.1 --- Introduction --- p.92 / Chapter 4.2 --- Results --- p.97 / Chapter 4.2.1 --- Expression of Adhesion Molecules on HMC-1 Cells --- p.95 / Chapter 4.2.2 --- TLR Expression Profile on HMC-1 Cells --- p.97 / Chapter 4.2.3 --- Effects of TLR ligands on HMC-1 Cell Adhesion Molecule Expressions --- p.99 / Chapter 4.2.4 --- TLR7-induced Phosphorylation of ERK and Effects of PD98059 on TLR7-induced ERK Phosphorylation --- p.104 / Chapter 4.2.5 --- Effect of TLR7 Ligand on HMC-1 Cells Cytokine Release --- p.108 / Chapter 4.3 --- Discussion --- p.110 / Chapter Chapter 5 --- Conclusions and Future Perspectives / Chapter 5.1 --- Conclusions --- p.115 / Chapter 5.2 --- Future Perspectives --- p.117 / References --- p.120 / Appendix --- p.136
|
532 |
The role of Decapentaplegic (Dpp) in Drosophila wing developmentShen, Jie 01 November 2004 (has links) (PDF)
Decapentaplegic (Dpp), a member of the TGF-[Beta] superfamily, acts as a morphogen to direct cell differentiation, determine cell fate and promote cell survival and proliferation in Drosophila wing development. To investigate the role of Dpp in Drosophila wing development, three aspects of the patterning role of Dpp have been analyzed. First, I investigated the cellular responses to Dpp signaling by a loss of function strategy. The consequences of lacking Dpp signal transduction on cell morphology and tissue integrity were analyzed. Second, I investigated whether Dpp signaling is down-stream of Hh signaling to maintain the normal cell segregation at the A/P boundary by clonal analysis. Third, I investigated whether cross talk among the Hh, Dpp and Wg signaling pathways exists and what its relevance for wing patterning is. To investigate the role of Dpp in Drosophila wing development, the general strategies are to look at the phenotypes of loss-of-function and gain-of-function. Mutant clones lacking Dpp signal transduction by knock down Dpp receptor Thick veins (Tkv) do not survive in wing blade due to JNK dependent apoptosis. To get larger mutant clones for analysis, JNK pathway was inhibited by knock down bsk (encodes JNK) in mutant clones lacking Dpp signaling using FLP-FRT system. Clones double mutant for tkv and bsk did not undergo apoptosis, but recovered at very low frequencies compared to sibling clones. Here, I showed that the low recovery of tkv bsk double mutant clones are due to the extrusion of mutant cells. The extrusion of tkv bsk double mutant cells correlated with changes in the actin cytoskeleton and a dramatic loss of the apical microtubule web normally present in these cells. These results suggest that Dpp signaling is required for cell morphogenesis in Drosophila wing development. We propose that Dpp acts as a survival factor in the wing disc epithelium by orchestrating proper cytoskeletal organization and maintaining normal cell-cell contact. Drosophila wing is subdivided into anterior (A) and posterior (P) compartments. This developing into adjacent compartments is crucial for the patterning of Drosophila wing. Previous study has shown that Hedgehog (Hh) signaling is required in A cells to maintain the A/P boundary and is sufficient to specify A type cell sorting. A previous study has in addition implicated the signaling molecule Decapentaplegic (Dpp) in maintaining the A/P boundary. However, this study did not address whether and in which cells, A and/or P, Dpp signal transduction was required to maintain this boundary. Here, I have analyzed the role of components of the Dpp signal transduction pathway and the relation of Dpp and Hh signaling in maintaining the A/P boundary by clonal analysis. I showed that Dpp signaling mediated by the Dpp target gene, T-box protein Optomotor-blind (Omb), is required in A cells, but not in P cells, to maintain the normal position of the A/P boundary. During patterning formation, it is essential for cells to receive precise positional information to pattern the tissue. It has been proposed for a long time that different signaling pathways such as Hedgehog (Hh), Dpp and Wingless (Wg) signaling pathways provide positional information for tissue patterning in an integrated manner. Recently, evidence of interactions between Hh and Dpp as well as Wg and Hh signaling pathways has been reported in Drosophila wing. Here, I have identified additional interactions among Hh, Dpp and Notch/Wg signaling. We propose that the selector gene engrailed, Hh and Dpp signaling interact with each other to regulate target genes expression and thus to pattern the wing along the A/P axis. Further more, I showed that Dpp signaling is also participating in the patterning along the D/V axis by interaction with the selector gene apterous and Notch/Wg signaling.
|
533 |
Characterizing intracellular signaling mechanisms involved in the progression of cardiac hypertrophy and failure : involvement of JAK/STAT and MAPK pathwaysNg, Dominic Chi Hiung January 2003 (has links)
[Truncated abstract] The innate ability of the heart to compensate for an increase in workload as a result of disease or injury, through an increase in size and mass is known as cardiac hypertrophy. The hypertrophy of the heart compensates for an increase in workload with an increase in cardiac output. However, excessive hypertrophy can result in cardiac dysfunction and substantially increases the risk of cardiac failure and mortality. The molecular mechanisms that regulate the development of cardiac hypertrophy and cardiac failure are not entirely understood. Traditionally, the G-protein Coupled Receptor (GPCR) and the downstream Mitogen-Activated Protein Kinase (MAPK) family of proteins have been implicated. However, elevated circulating and ventricular levels of several classes of cytokines also suggested that signaling by the downstream effectors of cytokine receptors, such as the Signal Transducers and Activators of Transcription (STATs), may be important. The aim of this thesis was, therefore, to characterize the involvement of MAPK and STAT pathways in regulating cardiac hypertrophy and cardiac failure. A function for MAPK and STAT signaling in regulating cardiac hypertrophy stimulated by the inflammatory cytokine IL-1Β was initially defined in primary cultures of neonatal rat cardiac myocytes. In this study, it was demonstrated that the chemical inhibition of ERK or p38MAPK was sufficient to inhibit IL-1Β-stimulated ANF expression. In contrast, simultaneous inhibition of both ERK and p38MAPK was required to ablate the hypertrophic morphology of cardiac myocytes treated with IL-1Β. These results demonstrated differential signaling from the MAPK isoforms in regulating the gene expression and morphological components of cardiac hypertrophy. In addition, it was revealed that IL-1Β treatment resulted in a delayed response (>60 min) in STAT3α tyrosine phosphorylation, which was subsequently shown to require the initial rapid activation of either ERK or p38MAPK. IL-1Β-stimulated STAT3 phosphorylation was also dependent on the de novo synthesis of secondary signaling molecules. The ablation of the STAT3 tyrosine phosphorylation by the inhibition of ERK or p38MAPK activity, correlated with the attenuation of IL-1Β-stimulated ANF expression, suggesting that signaling through STAT3α may be involved in regulating gene expression associated with IL-1Β cardiac hypertrophy
|
534 |
An investigation into the critical domains and function of XMI-ER1 during xenopus development /Teplitsky, Yoella, January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 130-141.
|
535 |
Alterations in JAK/STAT signaling pathway and blood-brain barrier function mechanisms underlying worsened outcome following stroke in the aged rat /DiNapoli, Vincent A., January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains x, 154 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 135-149).
|
536 |
Study of the scaffold properties of the phosphatidylinositol 5-phosphatase SHIP2 by characterization of two binding partners JIP1 and Intersectin1Xie, Jingwei 09 January 2009 (has links)
SH2-containing inositol polyphosphate 5-phosphatases, SHIP2, has been established as a regulator of the insulin cascade, of cell adhesion and spreading, actin structures, remodelling and cytoskeletal organization. However, the molecular mechanisms underlying these processes still needed additional investigations. Among different regulatory mechanisms, protein-protein interaction play an essential role. To better understand the molecular mechanism of SHIP2 in signalling pathway as well as to reveal novel roles of SHIP2, a two-hybrid was performed to search for SHIP2 protein interactors. JNK-interacting protein 1 (JIP1) and intersectin 1 (ITSN1) were two of the newly identified protein partners of SHIP2. In this thesis, we characterized the associations of SHIP2 with JIP1 and ITSN1 in different aspects as identifying the interacting domain involved, biochemical function regulations and cellular biological roles.<p><p>The JIP scaffold family of proteins associate with MAPK, MAPKK and MAPKKK creating functional signaling modules to control the specificity of signal transduction. JIP1 is characterized as a scaffold protein assembling JNK, MAPK kinase 7 (MKK7), mixed lineage kinase (MLK), dual leucine zipper-bearing kinase (DLK). It thus enhances the selectivity and effectiveness of kinase activation during JNK signaling. In this thesis, the SHIP2-JIP1 interaction has been confirmed both in overexpression system in COS-7 and CHO-IR cells, and in native cells of COS-7. Both the proline-rich (PR) domain (residues 359-487) and PTB domain of JIP1 participated in this interaction. Overexpression of SHIP2 in COS-7 cells up-regulated JIP1-mediated JNK activation and the tyrosine phosphorylations of both JIP1 and MLK3. These effects were independent of SHIP2 catalytic activity. By the use of kinase inhibitors, we showed that Abl and Src family tyrosine kinases might be implicated in the regulation of JIP1 tyrosine phosphorylation. The residue Y270 of JIP1, a potential target of Abl tyrosine kinase, was shown to be involved in SHIP2-increased JIP1 tyrosine phosphorylation. In an in vitro assay, JIP1 negatively regulated the catalytic activity of SHIP2. In addition, upon the stimulation of okadaic acid, the overexpression of SHIP2 caused less viability of COS-7 cells. These data provide a new molecular link between SHIP2 and JIP1-mediated JNK pathway, and may help explain the biochemical mechanisms of SHIP2 in cellular apoptosis, as well as in insulin pathway.<p> <p>Another protein partner, ITSN1, is a multi-domain protein which plays a role in endocytosis, MAPK signalling and actin cytoskeleton. The interaction between SHIP2 and ITSN1 was confirmed in overexpression systems in COS-7 cells, as well as at the physiological concentration with the endogenously expressed proteins in C2C12 and COS-7 cells. EGF stimulation did not modulate the association of SHIP2 and ITSN1. ITSN1-SH3D, A, C and E domains interacted with the C-terminal part of SHIP2 with the binding affinity as SH3D>SH3A>SH3C>SH3E. Upon the stimulation of EGF, the expression of SHIP2 may recruit ITSN1 short form (ITSN1-S) to cell membrane. The ITSN-mediated ERK1/2 and JNK activations in response to EGF were not modulated when SHIP2 or catalytic mutant of SHIP2 or TSHIP2 was overexpressed. The link between SHIP2 and ITSN may provide one of the molecular mechanisms used by SHIP2 to participate in receptor endocytosis regulation.<p><p>In conclusion, our data of the associations of SHIP2 with JIP1 and ITSN1 provide evidence for potential novel biochemical mechanisms of SHIP2 to be implicated in JNK pathway as well as EGF receptor endocytosis. JIP1 and ITSN1, which are both implicated in the JNK pathway, may also have a link through the common protein partner SHIP2, giving rise to potential interesting study goal. <p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
537 |
The role of Decapentaplegic (Dpp) in Drosophila wing developmentShen, Jie 15 November 2004 (has links)
Decapentaplegic (Dpp), a member of the TGF-[Beta] superfamily, acts as a morphogen to direct cell differentiation, determine cell fate and promote cell survival and proliferation in Drosophila wing development. To investigate the role of Dpp in Drosophila wing development, three aspects of the patterning role of Dpp have been analyzed. First, I investigated the cellular responses to Dpp signaling by a loss of function strategy. The consequences of lacking Dpp signal transduction on cell morphology and tissue integrity were analyzed. Second, I investigated whether Dpp signaling is down-stream of Hh signaling to maintain the normal cell segregation at the A/P boundary by clonal analysis. Third, I investigated whether cross talk among the Hh, Dpp and Wg signaling pathways exists and what its relevance for wing patterning is. To investigate the role of Dpp in Drosophila wing development, the general strategies are to look at the phenotypes of loss-of-function and gain-of-function. Mutant clones lacking Dpp signal transduction by knock down Dpp receptor Thick veins (Tkv) do not survive in wing blade due to JNK dependent apoptosis. To get larger mutant clones for analysis, JNK pathway was inhibited by knock down bsk (encodes JNK) in mutant clones lacking Dpp signaling using FLP-FRT system. Clones double mutant for tkv and bsk did not undergo apoptosis, but recovered at very low frequencies compared to sibling clones. Here, I showed that the low recovery of tkv bsk double mutant clones are due to the extrusion of mutant cells. The extrusion of tkv bsk double mutant cells correlated with changes in the actin cytoskeleton and a dramatic loss of the apical microtubule web normally present in these cells. These results suggest that Dpp signaling is required for cell morphogenesis in Drosophila wing development. We propose that Dpp acts as a survival factor in the wing disc epithelium by orchestrating proper cytoskeletal organization and maintaining normal cell-cell contact. Drosophila wing is subdivided into anterior (A) and posterior (P) compartments. This developing into adjacent compartments is crucial for the patterning of Drosophila wing. Previous study has shown that Hedgehog (Hh) signaling is required in A cells to maintain the A/P boundary and is sufficient to specify A type cell sorting. A previous study has in addition implicated the signaling molecule Decapentaplegic (Dpp) in maintaining the A/P boundary. However, this study did not address whether and in which cells, A and/or P, Dpp signal transduction was required to maintain this boundary. Here, I have analyzed the role of components of the Dpp signal transduction pathway and the relation of Dpp and Hh signaling in maintaining the A/P boundary by clonal analysis. I showed that Dpp signaling mediated by the Dpp target gene, T-box protein Optomotor-blind (Omb), is required in A cells, but not in P cells, to maintain the normal position of the A/P boundary. During patterning formation, it is essential for cells to receive precise positional information to pattern the tissue. It has been proposed for a long time that different signaling pathways such as Hedgehog (Hh), Dpp and Wingless (Wg) signaling pathways provide positional information for tissue patterning in an integrated manner. Recently, evidence of interactions between Hh and Dpp as well as Wg and Hh signaling pathways has been reported in Drosophila wing. Here, I have identified additional interactions among Hh, Dpp and Notch/Wg signaling. We propose that the selector gene engrailed, Hh and Dpp signaling interact with each other to regulate target genes expression and thus to pattern the wing along the A/P axis. Further more, I showed that Dpp signaling is also participating in the patterning along the D/V axis by interaction with the selector gene apterous and Notch/Wg signaling.
|
538 |
Genetic analysis of a signal transduction pathway : the regulation of invasive growth and starch degradation in Saccharomyces cerevisiaeVan Dyk, Dewald, 1975- 03 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: Cells of the yeast Saccharomyces cerevisiae are able to change their morphological
appearance in response to a variety of extracellular and intracellular signals. The
processes involved in morphogenesis are well characterised in this organism, but the
exact mechanism by which information emanating from the environment is integrated into
the regulation of the actin cytoskeleton and the yeast cell cycle, is still not clearly
understood. Considerable progress has, however, been made. The processes are
investigated on various levels including: (i) the nature of the signals required to elicit a
morphological adaptation, (ii) the mechanism by which these signals are perceived and
transmitted to the nucleus for gene transcription regulation (signal transduction pathways),
(iii) the role of the cytoskeleton, particularly actin, in morphogenesis, and (iv) the
relationship between cell cycle regulators and factors required for alterations in cellular
shape.
The focus of this study was on elements involved in the regulation of one of these
morphological processes, pseudohyphal formation, in S. cerevisiae. During pseudohyphal
differentiation normal oval yeast cells become elongated and mother and daughter cells
stay attached after cytokinesis to give rise to filaments. These filaments are able to
penetrate the growth substrate, a phenomenon referred to as invasive growth. Actin
remodelling is a prerequisite for the formation of elongated cells during pseudohyphal
development and invasive growth. Its main contribution to this event is the directing of
vesicles, containing cell wall constituents and enzymes, to specific sites of cell wall growth
at the cell periphery. In order to fulfil this cellular function, actin is regulated on several
levels. Signal transduction pathways that are activated in response to external nutritional
signals play important roles in the regulation of the actin cytoskeleton during pseudohyphal
differentiation. For this reason a literature review was compiled to introduce various
aspects of actin-structure, the regulation of this structure and the functions actin performs
during morphogenesis. The connection between signal transduction elements involved in
morphological processes and actin remodelling is also reviewed.
This study entailed the genetic analysis of numerous factors involved in the
regulation of pseudohyphal differentiation, invasive growth and starch metabolism. Several
transcriptional regulators playing a role in these phenomena were investigated. Apart from
the transcription factors, which include Mss11p, Msn1p, Ste12p, F108p,Phd1p and Tec1p,
additional elements ranging from transporters to G-proteins, were also investigated.
Mutant strains deleted for one or more of these factors were constructed and tested to
assess their abilities to form filaments that penetrate the growth substrate, and to utilise
starch as a carbon source. Complex genetic relationships were observed for various
combinations of these factors. Specifically, F108p,Msn1p and Ste12p were shown to act
independently in controlling invasive growth and starch metabolism, suggesting that these
factors are regulated by different signal transduction pathways. Mss11p, on the other hand, was found to play an indispensable role and seems to act as a downstream factor of
Msn1 p, Fl08p, Ste12p and Tec1 p. The exception to this is Phd1 p, since multiple copies of
PHD1 partially suppress the effect of a MSS11 deletion. The data suggests that Mss11 p
functions at the confluence of several signalling pathways controlling the transcriptional
regulation of genes required for invasive growth and starch degradation.
Different nutritional signals were also found to differentially regulate specific
signalling elements during the invasive growth response. For example, Tec1 p requires
Msn1 p activity in response to growth on media containing a limited nitrogen source. This
dependency, however, was absent when invasive growth was tested on glucose and
starch media.
Evidence was also obtained that confirmed the transcriptional co-regulation of
MUC1 and STA2. MUC1 encodes a mucin-like protein that is required for invasive growth
and pseudohyphal differentiation, whereas STA2 encodes a glucoamylase required for
starch degradation. Unpublished results indicated that several transcriptional regulators of
invasive growth also exert an effect on starch metabolism. The data generated during this
study complemented and confirmed published results. It also contributed to the
compilation of a more detailed model, integrating the numerous factors involved in these
signalling processes. / AFRIKAANSE OPSOMMING: Saccharomyces cerevisiae gisselle beskik oor die vermoë om hul morfologiese voorkoms
in responstot 'n verskeidenheid van ekstrasellulêre en intrasellulêre seine te verander. Die
prosesse betrokke by morfogenese is goed gekarakteriseerd in hierdie organisme, maar
die presiese meganisme waardeur inligting vanuit die omgewing geïntegreer word in die
reguleringvan die aktien-sitoskelet en die gisselsiklus, word nog nie ten volle verstaan nie.
Aansienlike vordering in die verband is egter gemaak. Die prosesse word op verskeie
vlakke ondersoek, insluitende: (i) die aard van die seine wat benodig word om 'n
morfologiese aanpassing te inisïeer; (ii) die meganisme waardeur hierdie seine
waargeneem en herlei word na die selkern vir die regulering van geen-transkripsie
(seintransduksie paaie); (iii) die rol van die sitoskelet, spesifiek aktien, in morfogenese en
(iv) die verhouding tussen selsiklusreguleerders en faktore wat benodig word vir
verandering in selvorm.
Hierdie navorsing fokus op elemente betrokke by die regulering van een van hierdie
morfologiese prosesse in S. cerevisiae, naamlik pseudohife-vorming. Gedurende
pseudohife-differensiëring neem tipiese ovaalvormige selle 'n verlengde voorkoms aan wat
tot die vorming van filamente lei. Hierdie filamente is in staat om die groeisubstraat te
penetreer, 'n verskynsel bekend as penetrasie-groei. Aktienherrangskikking is 'n
voorvereiste vir die vorming van verlengde selle tydens pseudohife-ontwikkeling. Die
hoofbydrae van aktien tot hierdie verskynsel is die oriëntering van uitskeidingsvesikels,
wat selwandkomponente en ensieme bevat, na spesifieke areas van selwandgroei op die
seloppervlak. Aktien word op verskeie vlakke gereguleer om hierdie sellulêre funksie te
vervul. Seintransduksiepaaie wat geaktiveer word in respons tot ekstrasellulêre
voedingsseine speel 'n belangrike rol in die regulering van die aktien-sitoskelet tydens
pseudohife-differensiëring. Op grond hiervan is 'n literatuuroorsig saamgestel vir die
bekendstelling van verskeie aspekte van aktienstruktuur, die regulering van hierdie
strukture en die funksies wat deur aktien gedurende morfogenese vervul word. Die
verband tussen seintransduksie-elemente betrokke by morfologiese prosesse en aktien
herrangskikkingword ook behandel.
Hierdie studie het die genetiese analisering van verskeie faktore betrokke by
pseudohife-differensiëring, penetrasie-groei en styselmetabolisme, behels. Verskeie
transkripsionele reguleerders wat In rol speel in hierdie prosesse was bestudeer. Buiten
die transkripsiefaktore Mss11p, Msn1p, Ste12p, F108p,Phd1P en Tec1p, was addisionele
faktore, wat gewissel het van transporters tot G-proteïene, ook ondersoek. Mutante-rasse
met geendelesies vir een of meer van hierdie faktore is gekonstrueer en getoets om vas te
stel hoe dit hul vermoë raak om penetrerende filamente te vorm, asook om te bepaal of
stysel as koolstofbron gebruik kan word. Komplekse genetiese interaksies vir verskeie
kombinasies van hierdie faktore is waargeneem. Dit was waargeneem dat F108p,Msn1p en Ste12p onafhanklik funksioneer tydens die regulering van penetrasie-groei en
styselmetabolisme, wat impliseer dat hierdie faktore deur verskillende
seintransduksiepaaie gereguleer word. Mss11 p word beskou as In onmisbare rolspeler in
hierdie prosesse en dit kom voor asof hierdie protein as 'n stroom-af faktor is en vereis
word vir die funksionering van Msn1p, F108p, Ste12p en Tec1p. Phd1p is egter 'n
uitsondering, aangesien veelvuldige kopieë van PHD1 die effek van 'n MSS11-delesie
gedeeltelik oorkom. Die data impliseer dat Mss11 p by die samevloei van verskeie
seintransduksiepaaie, benodig vir die transkripsionele regulering van gene betrokke by
penetrasie-groei en styselmetabolisme, funksioneer.
Dit was ook waargeneem dat verskillende voedingsseine die faktore betrokke by die
penetrasie-groeirespons differensieel reguleer. Tec1 p byvoorbeeld benodig Msn1paktiwitieit
in respons tot groei op media met 'n beperkte stikstofbron. Hierdie afhanklike
interaksie is egter afwesig wanneer penetrasie-groei bestudeer word op glukose- en
styselmedia.
Resultate wat die gesamentlike transkripsionele regulering van MUC1 en STA2
bevestig, is ook verkry. MUC1 kodeer vir 'n mukienagtige proteïen wat benodig word vir
pseudohife-vorming en penetrasie-groei, terwyl STA2 kodeer vir 'n glukoamilase
essensieël vir styselafbraak. Ongepubliseerde resultate dui daarop dat verskeie
transkripsionele reguleerders van penetrasie-groei ook In effek uitoefen op
styselmetabolisme. Die data wat gegenereer is tydens hierdie studie komplementeer en
bevestig reeds gepubliseerde resultate. Dit het ook bygedra tot die samestelling van 'n
gedetaileerde model wat die verskillende faktore, betrokke by hierdie
seintransduksieprosesse, integreer.
|
539 |
An investigation of NAADP-dependent Ca²⁺ signalling mechanisms in arterial smooth muscleKinnear, Nicholas P. January 2007 (has links)
Previous investigations on pulmonary artery smooth muscle cells have shown that nicotinic acid adenine dinucleotide diphosphate (NAADP) evokes highly localised intracellular Ca²⁺ bursts by mobilising thapsigargin-insensitive Ca²⁺ stores. Such localised Ca²⁺ signals may initiate global Ca²⁺ waves and contraction of the myocytes through the recruitment of ryanodine receptors (RyR) located on the sarcoplasmic reticulum (SR) via Ca²⁺-induced Ca²⁺-release (CICR). In this thesis I have shown that NAADP evokes localised Ca²⁺ signals through the mobilisation of a bafilomycin A1-sensitive, lysosome-related Ca²⁺ store. Lysosomal Ca²⁺ stores facilitate this process by colocalising with a subpopulation of RyRs on the surface of the SR to comprise a highly specialised trigger zone for Ca²⁺ signalling by NAADP. I have also shown that the proposed trigger zone for NAADP-dependent Ca²⁺ signalling may be formed between lysosomes and clusters of RyR subtype 3 (RyR3) located in close proximity to one another in the perinuclear region of cells. Localised Ca²⁺ bursts generated by NAADP-dependent Ca²⁺ release from acidic Ca²⁺ stores and subsequent CICR via RyR3 on the SR may then amplify Ca²⁺ bursts into a propagating Ca²⁺ signal by recruiting clusters of RyR subtype 2 (RyR2) located in the perinuclear and extra-perinuclear regions of the cell. The presence of this trigger zone may explain, in part, why Ca²⁺ bursts by NAADP induce, in an all-or-none manner, global Ca²⁺ signals by CICR via RyRs on the SR. Consistent with a role for NAADP and lysosomes as a discrete and agonist-specific Ca²⁺ signalling pathway utilised by vasoconstrictors, I have shown that endothelin-1 (ET-1), but not phenylephrine or prostaglandin-F2α, mobilises Ca²⁺ stores by NAADP, and that ET-1 initiates Ca²⁺ signalling by NAADP in a receptor subtype-specific manner through the activation of ETB receptors. These findings further advance our understanding of how that spatial organisation of discrete, organellar Ca²⁺ stores underpin the generation of differential Ca²⁺ signalling patterns by different Ca²⁺-mobilising messengers.
|
540 |
Signaling pathways and neuroprotection of retinal ganglion cells in a rat glaucoma model紀建中, Ji, Jianzhong. January 2002 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
|
Page generated in 0.1046 seconds