Spelling suggestions: "subject:"designal transduction"" "subject:"absignal transduction""
961 |
The oxidative metabolism by eosinophils : Effects of allergen exposure and interleukin-5Woschnagg, Charlotte January 2000 (has links)
<p>In this thesis the oxidative metabolism by blood eosinophils from birch pollen allergic subjects was studied and compared to that by eosinophils from healthy controls, during and out of the pollen season. The effects and mechanisms of <i>in vitro</i> IL-5 priming on blood eosinophils were investigated and compared to the effects of <i>in vivo</i> priming during pollen exposure.</p><p>The main findings of this work were that the oxidative metabolism by blood eosinophils taken from pollen allergic subjects is reduced during the pollen season. The eosinophils taken from asymptomatic allergics have a reduced capacity to produce oxygen free radicals as compared to non-allergic controls. The oxidative metabolism by blood eosinophils from allergic subjects is primed <i>in vivo</i> during the pollen season, as compared to the healthy controls and as compared to out of season. IL-5 primed the oxidative metabolism by eosinophils from allergic subjects in a similar way as eosinophils from healthy controls, both during and out of pollen exposure. The total and tyrosine phosphorylation patterns obtained were identical in eosinophils from allergic subjects and non-allergic controls during the pollen season. Spontaneous phosphorylation was the same in both groups and different from that after IL-5 priming. The oxidative metabolism of blood eosinophils is composed of different stages. The initial stage, measured as the t<sub>½</sub>rises of the CL curves, is an indication of the state of priming of the cell, while the end stage, measured as the peaks of the CL curves, is an estimate of the total radical production by the cells. IL-5 priming affected these two stages differently and the two stages are regulated by different signal transduction pathways and IL-5 priming causes a by-passing of MEK.</p><p>In conclusion, in this thesis it is shown that blood eosinophils from allergic subjects are primed <i>in vivo</i> during exposure to their allergen. This <i>in vivo</i> priming leads on one hand to a reduced oxidative metabolism during the pollen season, but also to a faster onset of radical production as a response to certain stimuli. Our data do not provide any evidence of IL-5 involvement in the <i>in vivo</i> priming of blood eosinophils from allergic patients during pollen exposure.</p> Read more
|
962 |
Mechanisms of Regulation of the Cell Cycle Inhibitor p21<sup>Waf1/Cip1</sup> in TGF-β-Mediated Cell Growth InhibitionPardali, Katerina January 2005 (has links)
<p>TGF-β is the founding member of a multifunctional family of cytokines that regulate many aspects of cell physiology, including cell growth, differentiation, motility and death and play important roles in many developmental and pathological processes. TGF-β signals by binding to a heterotetrameric complex of type I and type II serine/threonine kinase receptors. The type I receptor is phosphorylated and activated by the type II receptor and propagates the signal to the nucleus by phosphorylating and activating receptor-regulated Smad proteins (R-Smads). Once activated, the R-Smads translocate to the nucleus together with the common partner Smad, Smad4, in heteromeric complexes and regulate transcription of target genes.</p><p>The cell cycle inhibitor p21<sup>Waf1/Cip1</sup> (p21) is induced by a number of factors including p53 and TGF-β, and its high expression is associated with cellular differentiation and senescence. Low levels of p21 are required for the propagation of the cell cycle, where high levels of p21 expression result to cell cycle arrest. The mode of action of p21 is by interacting with and dissociating cyclin E- and cyclin A-CDK complexes. p21 is very potently upregulated by TGF-β in cell types of epithelial origin and this sustained upregulation is of utmost importance for TGF-β to exert its growth inhibitory effect.</p><p>The aim of this study was to clarify the mechanisms by which the cell cycle inhibitor p21 is regulated during the TGF-β-induced cell growth inhibition. During the course of this work we established that TGF-β regulates p21 via the Smad pathway at the transcriptional level and that upregulation of the p21 levels cannot be achieved in the absence of proper Smad signaling. This regulation is achieved by Smad proteins interacting with the transcription factor Sp1 at the proximal <i>p21</i> promoter region. We also established that p21 is regulated by all the TGF-β superfamily pathways as we showed that all type I receptors of the superfamily are able to upregulate p21. Despite that, we demonstrated that p21 induction by other members of the superfamily, such as BMPs, is not sufficient for growth suppression. This is because BMPs regulate additional genes such as <i>Id2</i> that counteract the effect of p21 on cell growth. Furthermore, we examined the homeobox gene <i>Meox2</i>, which is regulated by TGF-β, and established that this factor is important for the sustained p21 regulation and the cell growth inhibitory program exerted by TGF-β. Simultaneously, we examined the cross-talk between Notch and TGF-β signaling pathways and established a synergy between Notch and TGF-β during epithelial cell growth inhibition. We showed that TGF-β-induced growth arrest requires intact Notch signaling. Abrogation of Notch signaling results in a blockage of sustained p21upregulation, required for the TGF-β-induced growth arrest to occur.</p><p>This work contributes substantially to the mechanism of both immediate-early and prolonged-late regulation of p21 by TGF-β-superfamily pathways, leading to cell growth inhibition of epithelial cells.</p> Read more
|
963 |
Lysophosphatidic acid : Physiological effects and structure-activity relationshipsNilsson, Ulrika K. January 2002 (has links)
Lipids havepreviously been considered primarily as building blocks of the cell membrane, but are now also recognized as important cell signaling molecules. Lysophosphatidic acid (LPA) is a glycerophospholipid consisting of a phosphate head group, a linker region, and a lipophilic tail. LPA has earlier been shown to exert a diversity of cellular effects such as aggregation, apoptosis, contraction, migration, and proliferation. The effects of LPA are elicited by activation of its cognate G protein-coupled receptors LPA1, LPA2, and LPA3. In the present study we have used cultures of human smooth muscle cells (SMCs) and erythroleukemia cells (HEL), and isolated human platelets to characterize physiological effects of LPA compared with adrenaline and noradrenaline as well as structure-activity relationships of LPA. SMCs were isolated from biopsies of human myometrium obtained at cesarean sections. We show that cultured myometrial SMCs express multiple LPA and α2-adrenergic receptor subtypes. Treatment of SMCs with LPA and noradrenaline resulted in increases in proliferation. However, LPA elicits a much more pronounced stimulatory effect than noradrenaline. The ability to increase calcium might be one explanation why LPA is more effective. Further studies indicated that several pathways mediate the growth stimulatory effect of LPA where transactivation of epidermal growth factor receptors through matrix metalloproteinases as well as calcium/calmodulin-dependent protein kinases appears to be important. LPA enantiomers and LPA analogues were synthesized and characterized due to their capacity to increase calcium in HEL cells. Our study is the first to show that both natural (R) and unnatural (S) LPA enantiomers are capable of stimulating cells, suggesting LPA receptors are not stereoselective. Moreover, we have synthesized a LPA analogue with higher maximal effect than LPA by reducing the hydrocarbon chain length. In platelets we demonstrated that LPA is a weak calciumelevating compound which failed to stimulate aggregation. However, in combination with adrenaline, another weak platelet agonist, a complete aggregatory response was obtained in blood from some healthy individuals. These results are important since platelet activation is a key step in distinguishing normal from pathological hemostasis. Since LPA is present at high concentrations in atherosclerotic lesions, the synergistic effect of LPA and adrenaline might be a new risk factor for arterial thrombosis. / On the day of the public defence the status of the article IV was: Submitted for publication. Read more
|
964 |
The oxidative metabolism by eosinophils : Effects of allergen exposure and interleukin-5Woschnagg, Charlotte January 2000 (has links)
In this thesis the oxidative metabolism by blood eosinophils from birch pollen allergic subjects was studied and compared to that by eosinophils from healthy controls, during and out of the pollen season. The effects and mechanisms of in vitro IL-5 priming on blood eosinophils were investigated and compared to the effects of in vivo priming during pollen exposure. The main findings of this work were that the oxidative metabolism by blood eosinophils taken from pollen allergic subjects is reduced during the pollen season. The eosinophils taken from asymptomatic allergics have a reduced capacity to produce oxygen free radicals as compared to non-allergic controls. The oxidative metabolism by blood eosinophils from allergic subjects is primed in vivo during the pollen season, as compared to the healthy controls and as compared to out of season. IL-5 primed the oxidative metabolism by eosinophils from allergic subjects in a similar way as eosinophils from healthy controls, both during and out of pollen exposure. The total and tyrosine phosphorylation patterns obtained were identical in eosinophils from allergic subjects and non-allergic controls during the pollen season. Spontaneous phosphorylation was the same in both groups and different from that after IL-5 priming. The oxidative metabolism of blood eosinophils is composed of different stages. The initial stage, measured as the t½rises of the CL curves, is an indication of the state of priming of the cell, while the end stage, measured as the peaks of the CL curves, is an estimate of the total radical production by the cells. IL-5 priming affected these two stages differently and the two stages are regulated by different signal transduction pathways and IL-5 priming causes a by-passing of MEK. In conclusion, in this thesis it is shown that blood eosinophils from allergic subjects are primed in vivo during exposure to their allergen. This in vivo priming leads on one hand to a reduced oxidative metabolism during the pollen season, but also to a faster onset of radical production as a response to certain stimuli. Our data do not provide any evidence of IL-5 involvement in the in vivo priming of blood eosinophils from allergic patients during pollen exposure. Read more
|
965 |
Structure and function of the SH3 domain from Bruton´s tyrosine kinaseHansson, Henrik January 2001 (has links)
No description available.
|
966 |
The Laminins and their ReceptorsFerletta, Maria January 2002 (has links)
Basement membranes are thin extracellular sheets that surround muscle, fat and peripheral nerve cells and underlay epithelial and endothelial cells. Laminins are one of the main protein families of these matrices. Integrins and dystroglycan are receptors for laminins, connecting cells to basement membranes. Each laminin consists of three different chains, (α, β, γ). Laminin-1 (α1β1γ1) was the first laminin to be found and is the most frequently studied. Despite this, it was unclear where its α1 chain was expressed. A restricted distribution of the α1 chain in the adult epithelial basement membranes was demonstrated in the present study. In contrast, dystroglycan was found to have a much broader distribution. Dystroglycan is an important receptor for α2-laminins in muscle, but binds also α1-laminins. The more ubiquitous α5-laminins were also shown to bind dystroglycan, but with distinctly lower affinity than α1- and α2- laminins. The biological roles of different laminin isoforms have been investigated. Differences were found in the capacity of various tested laminins to promote epithelial cell adhesion. The α5-laminins were potent adhesive substrates, a property shown to be dependent on α3 and α6 integrins. Each receptor alone could promote efficient epithelial cell adhesion to α5-laminins. Yet, only α6 integrin and in particular the α6A cytoplasmic splice variant could be linked to laminin-mediated activation of a mitogen-activated protein kinase (MAP kinase) pathway. Attachment to either α1- or α5-laminins activated extracellular-signal regulated kinase (ERK) in cells expressing the integrin α6A variant, but not in cells expressing α6B. A new role for dystroglycan as a suppressor of this activation was demonstrated. Dystroglycan antibodies, or recombinant fragments with high affinity for dystroglycan, decreased ERK activation induced by integrin α6 antibodies. Integrin αvβ3 was identified as a novel co-receptor for α5-laminin trimers. Cell attachment to α5-laminins was found to facilitate growth factor induced cell proliferation. This proliferation could be blocked by antibodies against integrin αvβ3 or by an inhibitor of the MEK/ERK pathway. Therefore, integrin αvβ3 binding to α5-laminins could be of biological significance. Read more
|
967 |
Heparan Sulfate Regulation of Fibroblast Growth Factor (FGF) Receptor-1 Signal TransductionLundin, Lars January 2003 (has links)
Fibroblast growth factors (FGFs) constitute a family (currently FGF-1 to FGF-23) of polypeptides that are essential in embryonal development and adult physiology, in animals from nematodes to humans. FGFs bind to four receptor tyrosine kinases, denoted FGFR-1 to FGFR-4. For proper function, the FGFs and their receptors depend on specific polysaccharide co-receptors, denoted heparan sulfate (HS). This thesis describes HS regulation of FGFR-1 signal transduction using blood vessel endothelial cells as a model. We have determined HS structural features, necessary for FGF-2 induced FGFR-1 activation, using chemically modified heparin, which is structurally related to HS. Modified heparin, lacking sulfation at the 6-O position was inhibitory for FGFR-1 kinase activation and FGF-2 induced angiogenesis. Inhibition of blood vessel formation using modified heparin could be useful in treatment of diseases characterized by excess blood vessel formation. The critical role of HS sulfation for proper growth factor function was further underscored using an embryonal stem (ES) cell model. ES cells lacking expression of two isoforms of N-deacetyl N-sulfotransferase, NDST-1 and –2, failed to undergo embryonal development and to establish a vascular system. Exogenous heparin could not support development, but HS delivered from other ES cells allowed formation of primitive vessels and subsequent sprouting angiogenesis. We have, furthermore, shown that the mechanism whereby HS supports FGF receptor activation is qualitative, as well as quantitative. Kinase activity could be induced by FGF-2 in the absence of HS, but this allowed only selected phosphorylation. In the presence of HS, the kinase activity was stabilized, allowing a broader spectrum of phosphorylation of sites on the FGF receptor itself as well as on cytoplasmic substrates. Finally, using selected microarrays, we have examined the potential regulation of enzymes in the HS biosynthesis pathway and of different proteoglycans to which HS is attached. Overall, we found no evidence for dramatic regulation on the transcriptional level, but could identify specific upregulation of HS proteoglycan syndecan-2, during blood vessel formation in vitro. In conclusion, our studies demonstrate selective and complex regulation of HS synthesis and structure, essential in guiding growth factor function during health and disease. Read more
|
968 |
Mechanisms of Regulation of the Cell Cycle Inhibitor p21Waf1/Cip1 in TGF-β-Mediated Cell Growth InhibitionPardali, Katerina January 2005 (has links)
TGF-β is the founding member of a multifunctional family of cytokines that regulate many aspects of cell physiology, including cell growth, differentiation, motility and death and play important roles in many developmental and pathological processes. TGF-β signals by binding to a heterotetrameric complex of type I and type II serine/threonine kinase receptors. The type I receptor is phosphorylated and activated by the type II receptor and propagates the signal to the nucleus by phosphorylating and activating receptor-regulated Smad proteins (R-Smads). Once activated, the R-Smads translocate to the nucleus together with the common partner Smad, Smad4, in heteromeric complexes and regulate transcription of target genes. The cell cycle inhibitor p21Waf1/Cip1 (p21) is induced by a number of factors including p53 and TGF-β, and its high expression is associated with cellular differentiation and senescence. Low levels of p21 are required for the propagation of the cell cycle, where high levels of p21 expression result to cell cycle arrest. The mode of action of p21 is by interacting with and dissociating cyclin E- and cyclin A-CDK complexes. p21 is very potently upregulated by TGF-β in cell types of epithelial origin and this sustained upregulation is of utmost importance for TGF-β to exert its growth inhibitory effect. The aim of this study was to clarify the mechanisms by which the cell cycle inhibitor p21 is regulated during the TGF-β-induced cell growth inhibition. During the course of this work we established that TGF-β regulates p21 via the Smad pathway at the transcriptional level and that upregulation of the p21 levels cannot be achieved in the absence of proper Smad signaling. This regulation is achieved by Smad proteins interacting with the transcription factor Sp1 at the proximal p21 promoter region. We also established that p21 is regulated by all the TGF-β superfamily pathways as we showed that all type I receptors of the superfamily are able to upregulate p21. Despite that, we demonstrated that p21 induction by other members of the superfamily, such as BMPs, is not sufficient for growth suppression. This is because BMPs regulate additional genes such as Id2 that counteract the effect of p21 on cell growth. Furthermore, we examined the homeobox gene Meox2, which is regulated by TGF-β, and established that this factor is important for the sustained p21 regulation and the cell growth inhibitory program exerted by TGF-β. Simultaneously, we examined the cross-talk between Notch and TGF-β signaling pathways and established a synergy between Notch and TGF-β during epithelial cell growth inhibition. We showed that TGF-β-induced growth arrest requires intact Notch signaling. Abrogation of Notch signaling results in a blockage of sustained p21upregulation, required for the TGF-β-induced growth arrest to occur. This work contributes substantially to the mechanism of both immediate-early and prolonged-late regulation of p21 by TGF-β-superfamily pathways, leading to cell growth inhibition of epithelial cells. Read more
|
969 |
Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes : Structural studies of two bacterial one-component signal transduction systems DntR and HpNikRDian, Cyril January 2007 (has links)
Prokaryotes are continually exposed to variations in their environment. Survival in unstable milieu requires a wide range of transcriptional regulators (TRs) that respond to specific environmental and cellular signals by modulating gene expression and provide an appropriate physiological response to external stimuli. These adaptive responses to environmental signals are mostly mediated by TRs from one of two families: the single or the two component signal transduction systems (1CSTS; 2CSTS). In this thesis the structural analysis of two 1CSTS – DntR and NikR − are presented. One study was carried out to try to develop a bacterial biosensor for synthetic dinitrotulenes compounds, the other to characterise the Ni-sensing mechanism that contributes to the acid adaptation of the human pathogen Helicobacter pylori. DntR belongs to the LysR family and the crystal structures obtained have allowed the proposal a model of the interaction of DntR with salicylate inducer as well as giving insights into the signal propagation mechanism in LysR-type transcription factors (<b>paper I</b>). DntR mutant crystal structures combined with the modelling of DntR-2,4-dnt interactions led to the design of a DntR mutant that has a limited response to 2,4-dnt in a whole cell biosensor system (<b>paper 2</b>). Crystal structures of apo-NikR from H. pylori (HpNikR) and of Ni-bound intermediary states of the protein were obtained. The latter have helped in unravelling the Ni incorporation and selectivity mechanisms of NikRs and have shown a strong cooperativity between conformational changes in the Ni binding domain with movements of the DNA binding domain (<b>paper 3</b>). Biochemical studies and comparisons of the HpNikR crystal structures with those of NikR homologues strongly suggest that HpNikR has evolved different surface properties (<b>paper 4</b>) and a new mode of DNA binding. Read more
|
970 |
FGFs and Wnts in pancreatic growth and β-cell functionPapadopoulou, Stella January 2005 (has links)
Mesenchymal-epithelial interactions are pivotal for proper pancreatic growth and development. The pancreatic progenitor cells present in the early pancreatic anlagen proliferate and eventually give rise to all pancreatic cell types. The Fibroblast Growth Factor 2b (FGFR2b) high-affinity ligand Fibroblast Growth Factor 10 (FGF10) has been linked to pancreatic epithelial cell proliferation and we have previously shown that Notch signalling controls pancreatic cell differentiation via lateral inhibition. By overexpressing FGF10 under the control of the Ipf1/Pdx1 promoter in mice, we have shown that persistent FGF10 activation in the embryonic pancreas of transgenic mice perturbs pancreatic epithelial cell proliferation and also inhibits pancreatic cell differentiation by maintaining Notch activation. In the Ipf1/Fgf10 transgenic mice, the pancreatic epithelial cells are ‘locked’ in an undifferentiated progenitor-like state with sustained proliferative capacity. Collectively, our data suggest a key role for FGFR2b/FGF10 signalling in the regulation of pancreatic growth and differentiation and that FGFR2b/FGF10 signalling interact with the Notch signalling pathway. Glucose homeostasis in mammals is critically dependent on co-ordinated glucose uptake, oxidative metabolism and insulin secretion in β-cells. Although, several key genes controlling various aspects of glucose sensing, glucose metabolism, insulin expression and secretion have been identified, we know relatively little about the molecular mechanisms that induce and maintain the expression of genes required for glucose-stimulated insulin secretion (GSIS) in β-cells. Attenuation of FGFR1c signalling leads to diabetes in mice. Overexpression of FGF2, a high-affinity FGFR1c ligand, under the control of the Ipf1/Pdx1 promoter also leads to diabetes in mice. The Ipf1/Fgf2 mice present with normal endocrine and exocrine differentiation but display impaired glucose-stimulated insulin secretion (GSIS), perturbed expression of genes required for glucose sensing uptake together with oxidative metabolism and increased expression of the FGF-signalling inhibitors Spry-2 and Pyst1/MKP3 in β-cells. Thus, stringent control of FGF signalling activation appears crucial for the maintenance of the regulatory circuit that ensures proper GSIS in pancreatic β-cells and hence normoglycaemia. The Wnt family of ligands via their receptors Frizzled (Frz) have been shown to mediate mesenchymal-epithelial interactions and cell proliferation in a variety of different systems. Expression of a plethora of Wnt ligands and Frz receptors has been previously reported in the pancreas and mice missexpressing Wnt1 and Wnt5a under the Ipf1/Pdx1 promoter display severely perturbed development. Here, we show the temporal and spatial expression of Wnt4, Wnt7b and Frz3 at different stages of pancreas development. To elucidate the role of Wnt signalling in the pancreas, we overexpressed a dominant negative form of mouse Frz8 under the Ipf1/Pdx1 promoter in mice. The Ipf1/Frz8CRD mice display severe pancreatic hypoplasia demonstrating that attenuation of Wnt signalling in the pancreas leads to perturbed pancreatic growth. Nevertheless, the transgenic mice present with normal endocrine and exocrine differentiation and remain normoglycaemic. The maintenance of normoglycaemia in these mice appears to be the consequence of a relative increase in endocrine cell number per pancreatic area combined with enhanced insulin biosynthesis and insulin secretion. Collectively our data provide evidence that Wnt signalling is required pancreatic growth but not adult β-cell function. Read more
|
Page generated in 0.077 seconds