• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Studies on Polymer and Organic-Inorganic Hybrid Nanoparticles Reinforced Silica Aerogels

Duan, Yannan 27 April 2012 (has links)
No description available.
2

Encapsulation of Bacterial Endospores in Silica Aerogel Monoliths

Lynch, John January 2013 (has links)
No description available.
3

SILICA AEROGEL-POLYMER NANOCOMPOSITES AND NEW NANOPARTICLE SYNTHESES

Boday, Dylan Joseph January 2009 (has links)
Aerogels are extremely high surface area, low density materials with applications including thermal and acoustic insulators, radiation detectors and cometary dust particle traps. However, their low density and aggregate structure makes them extremely fragile and practically impossible to machine or handle without breaking. This has led to the development of aerogel composites with enhanced mechanical properties through the addition of polymers or surface modifiers. To date, attempts to strengthen aerogels have come with significant increases in density and processing time. Here I will describe our search for a solution to these problems with our invention using methyl cyanoacrylate chemical vapor deposition (CVD) to strengthen silica, aminated silica and bridged polysilsesquioxane aerogels. This approach led to a strength improvement of the composites within hours and the strongest composite prepared had a 100x strength improvement over the precursor aerogel. We also developed the first approach to control the molecular weight of the polymers that reinforce silica aerogels using surface-initiated atom transfer radical polymerization (SI-ATRP). Although PMMA reinforcement of silica aerogels improved the mechanical properties, further strength improvements were achieved by cross-linking the grafted PMMA. Additionally, we developed the first silica aerogels reinforced with polyaniline nanofibers that were strong and electrically conductive. Reinforcing silica aerogels with polyaniline allowed them to be used as a sensor for the detection of protonating and deprotonating gaseous species. Finally we developed a new approach for the synthesis of silica and bridged polysilsesquioxane spheres using a surfactant free synthesis. This approach allowed for the first in-situ incorporation of base sensitive functionalities during the sol-gel polymerization.
4

Synthesis and Carbon Dioxide Adsorption Properties of Amine Modified Particulate Silica Aerogel Sorbents

January 2014 (has links)
abstract: Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular group of capable materials are amine based solid sorbents that has shown to possess high adsorption capacities and favorable adsorption kinetics. A key variable in the synthesis of an amine based sorbent is the support which acts as the platform for the amine modification. Aerogels, due to their high porosities and surface areas, appear to be a promising support for an amine modified CO2 sorbent. Therefore, in order to develop a commercially viable CO2 sorbent, particulate aerogels manufactured by Cabot Corporation through an economical and proprietary ambient drying process were modified with amines using a variety of functionalization methods. Two methods of physical impregnation of the amino polymer TEPA were performed in order to observe the performance as well as understand the effects of how the TEPA distribution is affected by the method of introduction. Both samples showed excellent adsorption capacities but poor cyclic stability for lack of any covalent attachment. Furthermore the method of TEPA impregnation seems to be independent on how the polymer will be distributed in the pore space of aerogel. The last two methods utilized involved covalently attaching amino silanes to the surface silanols of the aerogel. One method was performed in the liquid phase under anhydrous and hydrous conditions. The materials developed through the hydrous method have much greater adsorption capacities relative to the anhydrous sample as a result of the greater amine content present in the hydrous sample. Water is another source of silylation where additional silanes can attach and polymerize. These samples also possessed stable cyclic stability after 100 adsorption/regeneration cycles. The other method of grafting was performed in the gas phase through ALD. These samples possessed exceptionally high amine efficiencies and levels of N content without damaging the microstructure of the aerogel in contrast to the liquid phase grafted sorbents. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2014
5

Properties and Structures of Sulfonated Syndiotactic Polystyrene Aerogel and Syndiotactic Polystyrene/Silica Hybrid Aerogel

Zhang, Huan 17 September 2014 (has links)
No description available.
6

Fabrication and Characterization of New Passive and Active Polymer Gels with Tailored Properties

In, Eunji 01 January 2011 (has links)
In this thesis, three different types of polymer-based gels are fabricated and characterized for passive and active applications. Silica aerogel is a 3D mesoporous solid material that can be used for thermal insulation or in the biomedical industry. In this thesis, silica aerogel is cross- linked with diisocyanate to improve its strength and flexibility, which greatly opens up the range of applications. Then, soft polymer gel with tissue equivalent characteristics is fabricated to mimic the spin-lattice (T1) and spin-spin (T2) relaxation times for the magnetic resonance imaging (MRI) phantom of a liver with lesions. This study demonstrates a relationship between the composition of a gelling agent, and T1 and T2 modifiers on its dielectric, mechanical and imaging properties. Finally, an ionic electroactive polymer (EAP) that can be actuated on an electric field is fabricated, and its swelling and bending behaviours on design parameters are closely examined.
7

Fabrication and Characterization of New Passive and Active Polymer Gels with Tailored Properties

In, Eunji 01 January 2011 (has links)
In this thesis, three different types of polymer-based gels are fabricated and characterized for passive and active applications. Silica aerogel is a 3D mesoporous solid material that can be used for thermal insulation or in the biomedical industry. In this thesis, silica aerogel is cross- linked with diisocyanate to improve its strength and flexibility, which greatly opens up the range of applications. Then, soft polymer gel with tissue equivalent characteristics is fabricated to mimic the spin-lattice (T1) and spin-spin (T2) relaxation times for the magnetic resonance imaging (MRI) phantom of a liver with lesions. This study demonstrates a relationship between the composition of a gelling agent, and T1 and T2 modifiers on its dielectric, mechanical and imaging properties. Finally, an ionic electroactive polymer (EAP) that can be actuated on an electric field is fabricated, and its swelling and bending behaviours on design parameters are closely examined.
8

Characterisation of Dust Particles Trapped in Silica Aerogels

Liu, Bing January 2011 (has links)
This thesis involves the study of dust particles trapped in silica aerogel for fusion dust diagnostics purpose. The low velocity impact experiments are done by implanting predefined dust particles into silica aerogel by using a springpiston air gun. The impact experiment results show that the hypervelocity impact model may not suitable for describing the fusion characteristic dust particles. The samples made by impact experiment are analyzed by ion microbeam analysis methods: Rutherford backscattering spectrometry (RBS) and Particle-induced X-ray Emission spectrometry (PIXE). The elements of dust particles are well identified by the X-ray spectra. The X-ray maps clearly show the dust shape. RBS and NRA spectra of an individual particle or a specific region show the depth information of the trapped particles, which is useful for determining the dust velocities. For the interpretation of ion beam analysis result, simulation of dust particles for RBS and NRA are done. The accessible depth for ion beam analysis in silica aerogel can be several hundred micrometers, which is adequate for dust diagnostics.
9

Effect of different silanes’ composition on physico-chemical characteristics of silica particles synthesized via one step preparation method

Firsching, Matilda, Heinö, Evelina, Naij, Saga, Scullman, Christoffer, Sinnott, Oliver, Svensson, Ingrid January 2022 (has links)
No description available.
10

Comportement thermo-hygrique de blankets aérogels de silice et applications à l’isolation des bâtiments / Thermo-hygric behavior of silica aerogel blankets and applications to building insulation

Nocentini, Kévin 14 December 2018 (has links)
En Europe, le secteur du bâtiment est le plus énergivore et représente environ 40 % de l’énergie totale consommée. A court terme, la façon la plus efficace de baisser cette consommation est de réduire les déperditions thermiques à travers l’enveloppe du bâtiment en augmentant son isolation thermique, tout en minimisant la perte de surface habitable. Dans ce contexte, les travaux de thèse portent sur l’étude et la mise au point pour pré-industrialisation de matériaux super-isolants composites à base d'aérogel de silice. Le matériau composite étudié fait partie de la famille des blankets aérogels et est obtenu via un procédé de séchage ambiant innovant. Grâce à leur faible conductivité thermique et leurs propriétés mécaniques renforcées, les blankets aérogels sont d’un grand intérêt pour l’isolation thermique qui nécessite de fines épaisseurs d’isolants. Les travaux de thèse visent dans un premier temps à effectuer une analyse des propriétés thermophysiques des blankets aérogels étudiés à la sortie du moule de fabrication et vis-à-vis de leur mise en œuvre lorsqu’ils sont soumis à différentes sollicitations (mécaniques, hygriques ...). Des travaux de modélisation du transfert de chaleur dans le blanket aérogel sont développés afin d’étudier les relations entre le transfert thermique et les paramètres morphologiques du matériau. Dans un second temps, les travaux de thèse portent sur l’étude des performances à attendre d’un système d’isolation basé sur le blanket aérogel mis en œuvre sur un bâtiment, à la fois par l’analyse du comportement thermique d’une cellule test en climat réel, ainsi que par la conduite de simulations numériques de bâtiments prenant en compte plusieurs techniques constructives, configurations de murs, et ce, pour plusieurs climats européens. Les résultats obtenus montrent que les blankets aérogels étudiés ont une très faible conductivité thermique –0,016 W.m-1.K-1– et ont un fort potentiel d’application dans l’isolation thermique du bâtiment. / Buildings are the largest energy end-use sector and account for about 40 % of the total final energy consumption in the EU-28. A short-term strategy to efficiently reduce this consumption is to decrease thermal losses through the building envelope by improving its thermal insulation, while minimizing the reduction of the available indoor living space. In this context, the thesis deals with the study and development for pre-industrialization of super-insulating composite materials based on silica aerogel. The studied material is part of the aerogel blanket family and is obtained by an innovative ambient drying process. With a very low thermal conductivity and reinforced mechanical properties, aerogel blankets are of great interest for applications where they can offer a cost advantage due to a space-saving effect. Firstly, the thesis work aims at performing analyses of the thermo-physical properties of the studied aerogel blankets at the exit of the molding and drying processes, and during application, when they are subjected to different environmental stresses (mechanical, hygric …). Heat transfer modeling is developed to study the relationship between the morphological parameters of the material and thermal transfer within it. Secondly, the thesis work focuses on the study of the expected performances of an insulating system based on the aerogel blanket, by the study of the thermal behavior of an experimental building monitored under actual climate, as well as the use of whole building energy numerical simulations taking into account several constructive techniques, different wall configurations, for various European climates. The results obtained show that the aerogel blankets studied have a thermal conductivity as low as 0.016 W.m-1.K-1 and have promising applications for building thermal insulation needs.

Page generated in 0.0537 seconds