• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et simulation numérique d’écoulements incompressibles turbulents diphasiques à phases non miscibles : application à l’interaction d’un jet turbulent avec une surface libre dans une cavité / Numerical modeling and simulation of non-miscible two-phase turbulent and incompressible ?ows : application to the interaction between a turbulent jet and a free surface in a cavity

Larocque, Jérôme 24 September 2008 (has links)
L’objet de cette thèse est de modéliser et de simuler des écoulements turbulents diphasiques incompressibles à phases non miscibles. La modélisation et la simulation de ce type d’écoulements sont traitées dans le cadre des méthodes de Simulation des Grandes Echelles (SGE) ou Large Eddy Simulation (LES) en anglais qui consistent à calculer directement les plus grandes structures de l’écoulement et à modéliser les plus petites. Ces méthodes adaptées aux écoulements turbulents monophasiques sont étendues au cadre des écoulements turbulents diphasiques. Pour cela, elles sont couplées avec une méthode eulérienne de type ’ Volume Of Fluid’ (VOF) spécifique au caractère diphasique de l’écoulement. La pertinence du couplage entre les modélisations SGE et VOF est testée sur la configuration industrielle proposée par le CEA-CESTA: l’impact d’un jet rond turbulent sur une surface libre eau/air dans une cavité. Des mesures expérimentales de vitesse (Particle Image Velocimetry PIV) réalisées au CEA-CESTA sont disponibles pour valider les résultats numériques issus des simulations. / The scope of this dissertation is to model and simulate non-miscible two-phase turbulent and incompressible flows. The modeling and the simulation of this kind of flows are carried out in the framework of the Large Eddy Simulation (LES) which consists in calculating directly the largest structures of the flow and in modeling the finest ones. These numerical methods, applied usually to the simulation of single-phase turbulent flows, are extended to the simulation of two-phase turbulent flows in this work. Hence, the LES methods are coupled with an Eulerian ’Volume of Fluid’ (VOF) approach which is particularly adapted to interfacial flows. The relevance of this numerical coupling bewtween LES and VOF methods is validated in the following industrial configuration of the CEA-CESTA: the impact of a turbulent round jet on a free water/air surface in a cavity. Some experimental velocity measurements (Particle Image Velocimetry PIV), carried out at the CEA-CESTA, are available to validate the numerical results.
2

Mechanisms affecting the dynamic response of swirled flames in gas turbines / Mécanismes affectant la réponse de la flamme swirlée dans les turbines à gaz

Hermeth, Sébastian 28 September 2012 (has links)
Les réglementations toujours plus drastiques sur les émissions de polluants ont conduit au développement de systèmes de combustion opérant en régimes pauvres qui sont malheureusement sujet aux instabilités thermo acoustiques. La capacité de la Simulation aux Grandes Echelles (SGE) à simuler des turbines à gaz industrielles complexes de grande puissance est mise en évidence au cours de ce travail de thèse. Tout d’abord, la SGE est appliquée à un brûleur académique et validée par comparaison à des mesures effectuées à l’Université de Berlin ainsi qu’à des simulations SGE effectuées avec OpenFOAM chez Siemens. Afin de déterminer la stabilité de ce bruleur le couplage entre l’acoustique et la combustion est modélisé par l’approche de type fonction de transfert de flamme (FTF). Suite à ces calcules et l’évaluation de la FTF les fluctuations du nombre de swirl sont identifiées comme un paramètre à même de modifier cette réponse de flamme. Après cette première étape de validation, une turbine à gaz industrielle est simulée en SGE pour deux géométries différentes du brûleur et pour deux points de fonctionnement. La FTF issue de ces calculs est peu influencée par les deux points de fonctionnement. A l’inverse, des légères modifications de la géométrie du swirler modifient les caractéristiques de la FTF montrant que plusieurs mécanismes sont en jeu. Ces mécanismes sont identifiés comme étant la vitesse d’entrée, les fluctuations de swirl et les fluctuations de fraction de mélange. Cette dernière est causée par: 1) la pulsation du débit de carburant injecté et 2) la trajectoire fluctuante des jets de carburant. Bien que le swirler soit conçu pour fournir un mélange le plus homogène possible, d’importantes hétérogénéités de mélange à l’entrée de la chambre de combustion sont présentes. Les perturbations de mélange se combinent avec les fluctuations de vitesse (et donc avec les fluctuations de swirl) aboutissant à des résultats de FTF différents. Un modèle étendu pour la FTF reliant le dégagement de chaleur à la vitesse d’entrée et à la fluctuation de fraction de mélange (modèle MISO) se révèle être une bonne solution pour ces systèmes complexes. Une analyse non linéaire montre en outre que l’amplitude de forçage conduit non seulement à une saturation de la flamme, mais aussi à un changement de la réponse de flamme. La saturation de la flamme n’est vérifiée que pour la FTF globale et le gain augmente localement avec une amplitude croissante. Pour ce système on notera enfin que la flamme linéaire, comme la flamme non linéaire, ne sont pas compactes: certaines zones pourtant situées l’une à coté de l’autre, ont des différences significatives de délai de FTF, montrant que certaines parties de la flamme amortissent l’excitation alors que d’autres l’amplifient. / Modern pollutant regulation have led to a trend towards lean combustion systems which are prone to thermo-acoustic instabilities. The ability of Large Eddy Simulation (LES) to handle complex industrial heavy-duty gas turbines is evidenced during this thesis work. First, LES is applied to an academic single burner in order to validate the modeling against measurements performed at TU Berlin and against OpenFoam LES simulations done at Siemens. The coupling between acoustic and combustion is modeled with the Flame Transfer Function (FTF) approach and swirl number fluctuations are identified changing the FTF amplitude response of the flame. Then, an industrial gas turbine is analyzed for two different burner geometries and operating conditions. The FTF is only slightly influenced for the two operating points but slight modifications of the swirler geometry do modify the characteristics of the FTF showing that a simple model taking only into account the flight time is not appropriate and additional mechanisms are at play. Those mechanisms are identified being the inlet velocity, the swirl and the inlet mixture fraction fluctuations. The latter is caused by two mechanisms: 1) the pulsating injected fuel flow rate and 2) the fluctuating trajectory of the fuel jets. Although the diagonal swirler is designed to provide good mixing, effects of mixing heterogeneities at the combustion chamber inlet occur. Mixture perturbations phase with velocity (and hence with swirl) fluctuations and combine with them to lead to different FTF results. Another FTF approach linking heat release to inlet velocity and mixture fraction fluctuation (MISO model) shows further to be a good solution for complex systems. A nonlinear analysis shows that the forcing amplitude not only leads to a saturation of the flame but also to changes of the delay response. Flame saturation is only true for the global FTF and the gain increases locally with increasing forcing amplitude. Both, the linear and the nonlinear flames, are not compact: flame regions located right next to each other exhibited significant differences in delay meaning that at the same instant certain parts of the flame damp the excitation while others feed it.
3

Contrôle actif de la combustion diphasique / Active control of two-phase combustion

Guézennec, Nicolas 09 March 2010 (has links)
L’application de cette thèse est le contrôle actif de la combustion dans les brûleurs industriels à combustible liquide. Il s’agit d’explorer les possibilités de contrôle d’un spray par des jets gazeux auxiliaires. Deux familles d’actionneurs utilisant ce procédé ont été testées sur un atomiseur coaxial assisté par air. Le premier dispositif est appelé (Dev). Composé d’un unique jet actionneur, il vise à dévier le spray. La seconde configuration, appelée (Sw), est équipée de 4 jets auxiliaires tangents au spray afin de lui conférer un effet de swirl et d’en augmenter le taux d’expansion. Les mesures de granulométrie par PDA et les visualisations du spray par strioscopie démontrent un effet important du contrôle sur l’atomisation et la forme du spray. On observe en outre une déviation pouvant atteindre 30°avec l’actionneur (Dev) et une augmentation du taux d’expansion de 80% dans le cas (Sw). Des simulations du banc expérimental ont de plus été menées avec le code AVBP. L’écoulement de gaz est calculé par simulation aux grandes échelles (SGE ou LES en Anglais). L’approche lagrangienne est utilisée pour simuler la phase dispersée. Une attention particulière a été portée aux conditions d’injection du gaz et des gouttes dans le calcul. Ceci a abouti au développement d’une nouvelle condition limite caractéristique non réfléchissante (VFCBC) destinée à l’injection d’écoulements turbulents en LES compressible. Les résultats de LES présentent un bon accord avec les mesures expérimentales. Les effets du contrôle sur la dynamique des gouttes et sur la topologie du spray (forme, déviation, expansion) sont correctement décrits. / The present work focuses on active control of two-phase combustion in industrial burners. The generic method explored in this thesis consists in controlling the injected fuel spray with transverse air jets. Two families of these jet actuators are tested on a coaxial airblast atomizer. The first system (Dev) is used to modify the trajectory of the spray, while the second one (Sw) introduces swirl into the spray to modify its spreading rate and mixing with the surrounding air. Experimental characterisations of the controlled flow with Schlieren visualisations and Phase Doppler Anemometry (PDA) show that actuators induce important effect on the spray. The deviation angle reaches 30° for the actuator (Dev) and the expansion rate increases of 80 % in the swirl case (Sw). Simulations of the experiment are then performed with the CFD code AVBP. The gas flow is computed with Large Eddy Simulation (LES). A Lagrangian formulation is used to simulate droplets trajectories. A particular attention is given to the injection of the gas flow and the droplets in the calculations. Therefore, a new non-reflecting characteristic boundary condition (VFCBC) has been derived to inject turbulent flows in compressible LES. A good agreement is observed between simulation and experiment. Control effects on the spray topology ( features, deviation, spread rate) and on the droplets velocities and diameters are correctly described by the Lagrangian LES.
4

SIMULATION DES GRANDES ECHELLES D'ECOULEMENTS TURBULENTS SUPERSONIQUES

Dubos, Samuel 20 September 2005 (has links) (PDF)
Ces travaux, initiés par le CNES et la SNECMA, sont principalement consacrés à la simulation numérique d'écoulements turbulents supersoniques en présence d'interactions ondes de choc/couche limite. L'étude de ces écoulements, sièges de phénomènes complexes, se révèle être d'une importance particulière en vue du dimensionnement d'organes de propulsion de lanceurs spatiaux. Il a été choisi, dans ce travail, d'investir les aspects instationnaires au moyen de la simulation des grandes échelles turbulentes. Les contraintes liées au traitement numérique ont aboutit au développement d'un schéma numérique hybride, permettant de minimiser les effets de dissipation inhérents aux schémas dédiés à la capture de chocs. Le problème de la génération de conditions aux limites turbulentes réalistes est également abordé. Une technique due à Lund, fondée sur un principe de renormalisation et permettant à l'écoulement de générer lui-même ses conditions d'entrée, a été retenue. Les résultats des simulations se sont révélées être en très bon accord avec les mesures expérimentales ainsi qu'avec les DNS de référence. En particulier, l'existence de basses fréquences associées au mouvement du choc réfléchi a pu être constatée, en accord avec les observations expérimentales. De plus, la simulation a révélé la présence de fréquences similaires à l'intérieur du bulbe de recirculation, venant ainsi conforter l'hypothèse selon laquelle les instabilités du choc de décollement sont conditionnées par celles de la zone décollée.

Page generated in 0.154 seconds