Spelling suggestions: "subject:"bingle well"" "subject:"bingle cell""
201 |
Analysis of characteristic differentiation processes at the single cell level / 特徴的な細胞分化過程に対するシングルセル解析Chung, Jihye 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19759号 / 農博第2155号 / 新制||農||1039(附属図書館) / 学位論文||H28||N4975(農学部図書室) / 32795 / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 植田 充美, 教授 宮川 恒, 教授 栗原 達夫 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
202 |
Vysokodimenzionální jednobuněčná cytometrie pro analýzu imunitního systému / High-dimensional single cell cytometry approach for immune system analysisKoladiya, Abhishek January 2021 (has links)
Technological advancement allowed for the advent of single-cell technologies capable of measuring a large number of cellular features simultaneously. These technologies have been subsequently used to shed light on the heterogeneity of cellular systems previously considered homogeneous, identifying the exclusive features of individual cells within cellular niches. Today, single-cell technologies represent an essential tool for studying the underlying immunological mechanisms correlating with disease. In this context, cytometry is one of the diverse high-throughput methods capable of examining more than 50 features per cell. However, utilising cytometry at its full potential requires the development of optimized assays. Additionally, the resulting high-dimensional data represent a challenge for existing computational techniques. This thesis attempts to address these challenges. The first part of the thesis is focused on developing a non-linear embedding algorithm for rapid analysis of cytometry datasets called EmbedSOM. The comparison of EmbedSOM with other state-of-the-art algorithms suggested the superiority of EmbedSOM with faster runtime. This is critical for the analysis of large datasets with millions of cells. Furthermore, EmbedSOM has additional functionality such as landmark guided...
|
203 |
Transcriptional states of CAR-T infusion relate to neurotoxicity: lessons from high-resolution single-cell SOM expression portrayingLoeffler-Wirth, Henry, Rade, Michael, Arakelyan, Arsen, Kreuz, Markus, Loeffler, Markus, Koehl, Ulrike, Reiche, Kristin, Binder, Hans 04 March 2024 (has links)
Anti-CD19 CAR-T cell immunotherapy is a hopeful treatment option for
patients with B cell lymphomas, however it copes with partly severe adverse
effects like neurotoxicity. Single-cell resolved molecular data sets in
combination with clinical parametrization allow for comprehensive
characterization of cellular subpopulations, their transcriptomic states, and
their relation to the adverse effects. We here present a re-analysis of single-cell
RNA sequencing data of 24 patients comprising more than 130,000 cells with
focus on cellular states and their association to immune cell related
neurotoxicity. For this, we developed a single-cell data portraying workflow
to disentangle the transcriptional state space with single-cell resolution and its
analysis in terms of modularly-composed cellular programs. We demonstrated
capabilities of single-cell data portraying to disentangle transcriptional states
using intuitive visualization, functional mining, molecular cell stratification, and
variability analyses. Our analysis revealed that the T cell composition of the
patient’s infusion product as well as the spectrum of their transcriptional states
of cells derived from patients with low ICANS grade do not markedly differ from
those of cells from high ICANS patients, while the relative abundancies,
particularly that of cycling cells, of LAG3-mediated exhaustion and of CAR
positive cells, vary. Our study provides molecular details of the transcriptomic
landscape with possible impact to overcome neurotoxicity.
|
204 |
CELL TYPE EMERGENCE AND CIRCUIT DISRUPTIONS IN FETAL MODELS OF 15q13.3 MICRODELETION BRAIN DEVELOPMENTKilpatrick, Savannah January 2023 (has links)
The 15q13.3 microdeletion is a common genetic disorder associated with multiple
neurodevelopmental disorders including autism spectrum disorder, epilepsy, and
schizophrenia. Patients have diverse clinical presentations, often prompting genetic
assays that identify the CNV in the clinic. This late-stage screening leaves a considerable
gap in our understanding of the prenatal and prediagnostic developmental impairments in
these individuals, providing a barrier to understanding the disease pathobiology. We
provide the first investigation into embryonic brain development of individuals with the
15q13.3 microdeletion by generating multiple 3D neural organoid models from the
largest clinical cohort in reported literature. We incorporated unguided and guided
forebrain organoid models into our multi-transcriptomic phenotyping pipeline to uncover
changes in cell type emergence and disruptions to circuit development, all of which had
underlying changes to cell adhesion pathways.
Specifically, we identified accelerated growth trajectories in 15q13.3del unguided
neural organoids and used single cell RNA sequencing to identify changes in radial glia
dynamics that affect neurogenesis. We measured changes in the pseudotemporal
trajectory of matured unguided neural organoids, and later identified disruptions in
synaptic signaling modules amongst the primary constituents to neural circuitry,
excitatory and inhibitory neurons.
We leveraged dorsal and ventral forebrain organoid models to better assess circuit
dynamics, as they faithfully produce the excitatory and inhibitory neurons in the pallium
and subpallium, respectively. We then used the entire 15q13.3del cohort and performed
bulk RNA sequencing on each tissue type at two timepoints and discovered convergence on transcriptional dysregulation and disruptions to human-specific zinc finger proteins
localized to chromosome 19. We also identified cell type-specific vulnerabilities to DNA
damage and cell migration amongst the dorsal and ventral organoids, respectively, which
was consistent with the excitatory and inhibitory neural subpopulations amongst the
unguided neural organoids scRNA Seq, respectively.
We then examined neuron migration in a 3D assembloid model by sparsely
labeling dorsal-ventral forebrain organoids from multiple genotype-lineage combinations.
Light sheet microscopy identified deficits in inhibitory neuron migration and
morphology, but not migration distance, suggesting a complex disruption to cortical
circuitry. This novel combination of cell type characterization, pathway identification,
and circuitry phenotyping provides a novel perspective of how the 15q13.3 deletions
impair prenatal development and can be applied to other NDD models to leverage
understanding of early disease pathogenesis. / Dissertation / Doctor of Science (PhD) / The development of the human brain is a highly complex and tightly regulated
process that requires the participation of multiple cell types throughout development.
Disturbances to the emergence, differentiation, or placement of these cell types can cause
disruptions and local miswiring of neural circuits, which is often associated with
neurodevelopmental disorders (NDDs). The 15q13.3 microdeletion syndrome is a highly
complex condition associated with multiple NDDs and has seldom been studied in a
human context. To address this, we used stem cells derived from a 15q13.3 microdeletion
syndrome cohort and their typically developing familial controls to generate unguided
(“whole brain”) and region-specific organoids to investigate early fetal development
across time.
We used the largest 15q13.3 microdeletion cohort in reported literature to identify
shared disruptions in early developmental milestones such as neurogenesis, neural
migration, and neural patterning. We identified expansion of specific cell populations,
including progenitors that later give rise to mature neurons. Abnormalities persisted in
more mature cell populations, including the inhibitory neurons responsible for
establishing critical microcircuitry in the human cortex. By generating guided organoids
that enrich for excitatory and inhibitory neural populations, we were able to merge the
models to form assembloids, where we captured early migratory and morphological
deficits in inhibitory neuron populations, which is supported by the multi-transcriptomics
experiments performed in both organoid models. This study provides a framework for
examining fetal development in a neurodevelopmental disorder context. By using the
15q13.3 microdeletion background, we found novel disruptions in cell type emergence and circuit formation previously unreported in mouse or 2D neuron models, highlighting
the utility of the phenotyping platform for disease modeling.
|
205 |
Droplet-Based Microfluidics for High-Throughput Single-Cell Omics ProfilingZhang, Qiang 06 September 2022 (has links)
Droplet-based microfluidics is a powerful tool permitting massive-scale single-cell analysis in pico-/nano-liter water-in-oil droplets. It has been integrated into various library preparation techniques to accomplish high-throughput scRNA-seq, scDNA-seq, scATAC-seq, scChIP-seq, as well as scMulti-omics-seq. These advanced technologies have been providing unique and novel insights into both normal differentiation and disease development at single-cell level. In this thesis, we develop four new droplet-based tools for single-cell omics profiling. First, the developed Drop-BS is the first droplet-based platform to construct single-cell bisulfite sequencing libraries for DNA methylome profiling and allows production of BS library of 2,000-10,000 single cells within 2 d. We applied the technology to separately profile mixed cell lines, mouse brain tissues, and human brain tissues to reveal cell type heterogeneity. Second, the new Drop-ChIP platform only requires two steps of droplet generation to achieve multiple steps of reactions in droplets such as single-cell lysis, chromatin fragmentation, ChIP, and barcoding. Third, we aim to establish a droplet-based platform to accomplish high-throughput full-length RNA-seq (Drop-full-seq), which both current tube-based and droplet-based methods cannot realize. Last, we constructed an in-house droplet-based tool to assist single-cell ATAC-seq library preparation (Drop-ATAC), which provided a low-cost and facile protocol to conduct scATAC-seq in laboratories without the expensive instrument. / Doctor of Philosophy / Microfluidics is a collection of techniques to manipulate fluids in the micrometer scale. One of microfluidic techniques is called "droplet-based microfluidics". It can manipulate (i.e., generate, merge, sort, split, etc) pico-/nano-liter of water-in-oil droplets. First, since the water phase is separated by the continuous oil phase, these droplets are discrete and individual reactors. Second, droplet-based microfluidics can achieve highly parallel manipulation of thousands to millions of droplets. These two advantages make droplet-based microfluidics an ideal tool to perform single-cell assays. Over the past 10 years, various droplet-based platforms have been developed to study single-cell transcriptome, genome, epigenome, as well as multi-ome. To expand droplet-based tools for single-cell analysis, we aim to develop four novel platforms in this thesis. First, Drop-BS, by integrating droplet generation and droplet fusion techniques, can achieve high-throughput single-cell bisulfite sequencing library preparation. It can generate 10,000 single-cell BS libraries within 2 days which is difficult to achieve for conventional library preparation in tubes/microwells. Second, we developed a novel and facile Drop-ChIP platform to prepare single-cell ChIP-seq library. It is easy to operate since it only requires two steps of droplet generation. It also generates higher quality of data compared to previous work. In addition, we are working on the development and characterization of the other two droplet-based tools to achieve full-length single-cell RNA-seq and single-cell ATAC-seq.
|
206 |
Col1α2-Cre-mediated recombination occurs in various cell types due to Cre expression in epiblasts / エピブラストにおける組み換え酵素Creの発現によって、Col1α2-Cre系統では様々な細胞種において組み換えが起こる松本, 讓 23 May 2024 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第25491号 / 医博第5091号 / 新制||医||1073(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 浅野 雅秀, 教授 篠原 隆司, 教授 近藤 玄 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
207 |
Molecular functions of the transcriptional regulator AP-2 alpha (TFAP2A) in the renal collecting ductLeiz, Janna 26 June 2023 (has links)
Tfap2a gehört zur Familie der AP-2-Transkriptionsfaktoren. Heterozygote Mutationen von TFAP2A im Menschen führen zum Branchio-Okulo-Fazialen-Syndrom (BOFS) und sind mit Nierenanomalien assoziiert. Molekulare Mechanismen, die zu diesen BOFS-assoziierten Nierenanomalien führen, sind noch unbekannt.
In diesem Projekt wurde die Expression von Mitgliedern der AP-2-Familie in neugeborenen und erwachsenen Wildtyp-Mäusen analysiert. Tfap2a wurde in der Ureterknospe und der distalen Region des S-förmigen Körpers in den Nieren neugeborener Mäuse exprimiert. Die Expression blieb in ausgereiften distalen Tubuli und Sammelrohren erhalten. Tfap2b, ein zweites Mitglied der AP-2-Familie, das in der Niere exprimiert wird und mit Zystenbildung assoziiert ist, wurde im aufsteigenden Ast der Henleschen Schleife sowie in den distalen Tubuli und dem in der Nierenrinde liegenden Sammelrohr exprimiert.
Um die Rolle von Tfap2a in der Niere zu untersuchen, wurden Mäuse mit einer sammelrohrspezifischen Deletion von Tfap2a (Tfap2a-KO) erzeugt.
Phänotypische und morphologische Analysen ergaben, dass Tfap2a-KO-Mäuse mäßig reduzierte Nierengewichte und eine fortschreitende Dilatation der äußeren medullären Sammelrohre aufwiesen.
Einzelkern- und RNA-Sequenzierung der Nieren adulter Mäuse zeigte eine deregulierte Expression von Genen, die mit der Organisation von Aktinfilamenten, Zelladhäsion, Wnt-Signalen und anderen Signalwegen der Nierenentwicklung in Verbindung stehen. In einem isolierten Modell von kultivierten Sammelrohrzellen mit einer Deletion von Tfap2a waren ähnliche Signalwege dereguliert.
Insgesamt deutet diese Studie darauf hin, dass Tfap2a für die Differenzierung des Sammelrohrepithels und die Regulierung des Durchmessers des Tubuluslumens erforderlich ist. Dies ermöglicht Einblicke in die molekularen Grundlagen der beim BOFS beobachteten Nierenfehlbildungen. / The transcriptional regulator Tfap2a is part of the AP-2 transcription factor family. Heterozygous mutations of TFAP2A in humans lead to branchio-oculo-facial syndrome (BOFS) and are associated with renal anomalies. Molecular mechanisms leading to BOFS-associated renal anomalies are still unknown.
In this project, expression patterns of AP-2 family members were analyzed in newborn and adult wildtype mice. Tfap2a was expressed in the ureteric bud and distal region of the S-shaped body in kidneys of newborn mice. Expression was maintained in mature distal tubules and collecting ducts. Tfap2b, a second AP-2 family member expressed in the kidney and associated with cyst formation, was found in the ascending limb and showed overlapping expression with Tfap2a in distal tubules and the cortical collecting duct.
To investigate the role of Tfap2a in the kidney, mice with a collecting duct-specific deletion of Tfap2a (Tfap2a-KO) were generated by crossing mice carrying a Cre-recombinase under the Hoxb7 promotor and mice with floxed Tfap2a alleles.
Phenotypic and morphological analyses revealed that Tfap2a-KO mice displayed moderately reduced kidney weights and a progressive dilation of outer medullary collecting ducts.
Single-nucleus and bulk RNA sequencing of kidneys of three months old Tfap2a-KO mice and littermate controls indicated deregulated expression of genes associated with actin filament organization, cell adhesion, Wnt signaling, and other kidney developmental pathways. Genes deregulated in Tfap2a-deficient mice included several genes previously implicated in the development of congenital anomalies of the kidney and urinary tract. In an isolated model of cultured collecting duct cells carrying a Tfap2a knockout similar pathways were deregulated.
Taking together, this study indicates that Tfap2a is required for collecting duct epithelium differentiation and tubular lumen diameter regulation, providing insights into the molecular basis of renal defects observed in BOFS.
|
208 |
Cellular heterogeneity in the DNA damage response is determined by cell cycle specific p21 degradationSheng, Caibin 23 January 2018 (has links)
Die zelluläre Antwort auf einen spezifischen Stimulus wird nicht nur durch den Stimulus selbst, sondern auch von dem Zustand der Zelle bestimmt. Um ein tieferes Verständnis für die Variabilität in einer Zellpopulation zu gewinnen, ist es notwendig, die verschiedenen zellulären Antworten mit definierten zellulären Zuständen zu verbinden. In dieser Arbeit wurde ein System etabliert, welches es ermöglicht, die zelluläre Antwort auf DNA-Schäden und den Einfluss unterschiedlicher zellulärer Zustände zu studieren sowie die zu Grunde liegenden molekularen Mechanismen zu identifizieren.
Im Zuge dessen wurde eine auf CRISPR/Cas9 basierende Methode entwickelt, mit der Fluoreszenzreporter für endogene Signalproteine in nicht transformierten Brustepithelzellen (MCF10A) generiert wurden. Anhand dieses Reportersystems konnte durch time-lapse Mikroskopie die Dynamik des Tumorsuppressors p53 und eines seiner Zielgene, des Zellzyklusinhibitors p21, verfolgt werden. Dabei wurde deutlich, dass die p21 Antwort der einzelnen Zellen auf DNA-Schäden sehr heterogen ausfällt.
Über eine Form-basierte Gruppierungsmethode wurden vier verschiedene Subpopulationen mit charakteristischen p21 Dynamiken identifiziert. Um den Einfluss der Zellzyklusphase zu untersuchen, wurde die Zellteilung vor Bestrahlung analysiert und so Rückschlüsse auf die initiale Zellzyklusphase gezogen. 24h nach Bestrahlung wurde ein EdU labeling durchgeführt und der Zellzyklus mittels semi-supervised Klassifizierung bestimmt.
Durch Einführen einer Mutation in der Bindedomäne von p21 wurde gezeigt, dass proliferating cellular nuclear antigen (PCNA) für die Heterogenität der p21 Antwort verantwortlich ist.
Alles in allem bietet mein Projekt eine Pipeline, um auf Einzelzellebene zu erforschen, wie zelluläre Antworten durch den Zellzyklus beeinflusst werden. Dieser Ansatz könnte zukünftig Anwendung in der Erforschung von Medikamentenresistenz finden, zumal zelluläre Heterogenität in der Tumortherapie zu fractional killing führt. / The cellular response to a given stimulus is not only governed by the stimulus itself, but also depends on the state of the cells. However, it remains obscure how cellular states influence cell fate decisions. In this thesis, I established a framework to study how the cellular response to DNA damage is affected by varying cell states and to identify the underlying molecular mechanisms.
To this end, I generated fluorescent reporters using CRISPR/Cas9 in non-transformed breast epithelial cells (MCF10A) and measured the dynamics of the tumor suppressor p53 and one of its target genes, the cell cycle inhibitor p21 using time-lapse microscopy. I found DNA damage induced highly diverse p21 dynamics in individual cells. A shape-based clustering identified four subpopulations of characteristic p21 dynamics. To examine the source of variability, I analyzed initial cell cycle states by monitoring cell division prior to damage, and determined final cellular state by EdU labelling and a semi-supervised classification 24h post damage. The results suggested that p21 dynamics depend on cell cycle phases and determine cell cycle progression. Furthermore, proliferating cellular nuclear antigen (PCNA)--a cell cycle dependent factor--
was shown to determine p21 heterogeneity using a mutant p21 deficient in interaction with PCNA.
Overall, my project provides a pipeline to study at the single cell level how cellular response is affected by cellular states. Considering that cellular heterogeneity leads to fractional killing in tumor therapies, this approach also suggests future application on studying drug-resistance in cancer therapy.
|
209 |
Advanced Separations and Mass Spectrometry Data Acquisition Strategies to Improve Sensitivity and Throughput in Single-Cell ProteomicsTruong, Thy 11 December 2023 (has links) (PDF)
Single Cell Proteomics (SCP) is an emerging discipline that contributes to a deeper understanding of individual cells' essential components. In biological systems, individual cells exhibit remarkable diversity, showcasing distinct proteomic profiles and functions. Mass Spectrometry (MS)-based techniques have become essential tools for exploring the proteomes of single cells with remarkable precision. While traditional bulk proteomics methods have been invaluable in revealing the overall protein composition of biological samples, they fall short in capturing the subtle nuances and heterogeneity among individual cells in a population. This limitation emphasizes the need for more targeted and detailed analyses to uncover the protein makeup of single cells. The MS-Based Single-Cell Proteomics technology serves as a valuable solution, providing comprehensive insight at the cellular level by analyzing proteins for identity, abundance, post-translational modifications, and interactions. This dissertation focuses on advancing single-cell proteomics through method development to enhance sensitivity and throughput. It presents a detailed protocol for a label-free single-cell proteomics workflow that integrates the cost-effective HP D100 Single Cell Dispenser and a one-hour, one-step sample preparation method. In contrast to the standard data-dependent acquisition method, the novel wide window acquisition (WWA) intentionally co-isolates and co-fragments adjacent precursors along with the selected precursor, using large isolation windows. Optimized WWA significantly increased the number of MS2-identified proteins by ≈40% compared to standard data-dependent acquisition. In a 40-minute LC gradient at ≈15 nL/min, an average of 3000 proteins per single HeLa cell was identified. Employing this platform, we compared protein expression in individual HeLa cells where the crucial autophagy gene, atg9a, was knocked out, and contrasted it with their isogenic wild-type parental line. To enhance throughput and robustness while preserving superior sensitivity at ultra-low flow rates, we developed an improved multi-column nanoLC system. This system features accelerated offline gradient generation, multiple storage sample loops with selective elution profiles, and allows for analysis as fast as every 20 minutes at 40 nL/min with close to 100% MS utilization time. Moreover, it enables continuous operation for up to 6 months without the need for column replacement. When applied to single-cell Multiple Myeloma treated with lenalidomide, this workflow identified an average of around 1300 unique protein groups.
|
210 |
A compact system for ultracold atomsTorralbo Campo, Lara January 2012 (has links)
This thesis describes the design, construction and optimisation of two compact setups to produce ⁸⁷Rb Bose-Einstein condensates and dual ⁷Li-⁸⁷Rb Magneto- Optical Traps (MOTs). The motivation for compact systems is to have simplified systems to cool the atoms. The first experimental setup is based on a single pyrex glass cell without the need for atom chips. Fast evaporation will be achieved in a hybrid trap comprising of a magnetic quadrupole trap and an optical dipole trap created by a Nd:YVO4 laser and with future plans of using a Spatial Light Modulator (SLM). To enhance an efficient and rapid evaporation, we have investigated Light-Induced Atomic Desorption (LIAD) to modulate the Rb partial pressure during the cooling and trapping stage. With this technique, a ⁸⁷Rb MOT of 7 x 10⁷ atoms was loaded by shining violet light from a LED source into the glass cell, whose walls are coated with rubidium atoms. The atoms were then cooled by optical molasses and then loaded into a magnetic trap where lifetime measurements demonstrated that LIAD improves on magnetically-trapped atoms loaded from constant background pressure by a factor of six. This is quite encouraging and opens the possibility to do a rapid evaporation. In a second experiment, we have designed a compact system based on a stainless steel chamber to trap either ⁷Li or ⁶Li atoms in a MOT loaded from alkali-metal dispensers without the need of conventional oven-Zeeman slower. This setup can also load ⁸⁷Rb atoms, allowing future projects to simultaneously produce degenerate quantum gases of bosonic ⁸⁷Rb and fermionic ⁶Li atoms.
|
Page generated in 0.0702 seconds