• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 258
  • 164
  • 18
  • 17
  • 16
  • 11
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 620
  • 620
  • 449
  • 150
  • 148
  • 143
  • 143
  • 125
  • 98
  • 91
  • 71
  • 69
  • 62
  • 61
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Análise de marcadores forenses (STRs e SNPs) rotineiramente empregados na identificação humana utilizando sequenciamento de nova geração / Analysis of forensic markers (STRs and SNPs) routinely used in human identification assays by means of next generation sequencing

Silva, Guilherme do Valle 05 October 2018 (has links)
A genética forense vem se desenvolvendo cada vez mais, com novas tecnologias e implementação de novos conjuntos de marcadores de DNA com maiores níveis de informatividade. Os marcadores genéticos são amplamente usados na identificação humana, pois permitem distinguir indivíduos com alta acurácia. Duas classes de marcadores muito utilizadas atualmente são os STRs (Short Tandem Repeats) e os SNPs (Single Nucleotide Polymorphisms). Os STRs são altamente informativos e, portanto, úteis para a prática forense. Kits mais novos como GlobalFiler (Thermo Fisher Scientific) e PowerPlex Fusion System (Promega) apresentam a análise de mais de 20 loci STRs de uma só vez. Já os SNPs, por possuírem sua informatividade mais reduzida (necessita de mais loci analisados), são menos utilizados, porém apresentam vantagem em amostras degradadas de DNA; assim, conjuntos de identificação como o 52-plex desenvolvido pelo consórcio SNPforID e o conjunto IISNPs, vêm sendo estudados em várias populações do mundo. Com o desenvolvimento de técnicas de sequenciamento de nova geração (NGS Next Generation Sequencing) para análise de DNA, a obtenção de perfis de DNA se tornou mais acurada. Algumas plataformas permitem gerar perfis de até 96 indivíduos simultaneamente. Este estudo tem por objetivo principal analisar 171 marcadores genéticos (Amelogenina, Y-INDEL, 30 STRSs e 139 SNPs) em 340 indivíduos miscigenados da região da cidade de Ribeirão Preto (SP) utilizando a plataforma de sequenciamento de nova geração MiSeq Personal Sequencer (Illumina Inc.), bem como calcular as frequências alélicas e genotípicas, verificar a aderência ao equilíbrio de HardyWeinberg e estimar parâmetros forenses para os diferentes conjuntos de marcadores. Análises de ancestralidade foram realizadas para os conjuntos de SNPs. Para o preparo das bibliotecas de amostras a serem sequenciadas, foi utilizado o kit HaloPlex (Agilent Technologies, Inc), onde foram incluídos os marcadores dos kits GlobalFiler e PowerPlex Fusion System, e os SNPs existentes no conjunto do consórcio SNPforID (52-plex) e IISNPs (92 SNPs). De todos os marcadores incluídos no ensaio, apenas um SNP (rs763869) presente no conjunto SNPforID não pôde ser analisado devido a questões técnicas. Dos 139 SNPs analisados apenas seis apresentaram desvios significativos em relação ao equilíbrio de Hardy-Weinberg,número este esperado devido ao acaso. Os conjuntos de SNPs apresentam elevada informatividade com Probabilidade de Match de 6,48 x 10-21 (52-plex) a 4,91 x 10-38 (IISNP), e Poder de Exclusão de 0,9997 (52-plex) e 0,99999997 (IISNP). De modo geral, as inferências de ancestralidade obtida utilizando estes conjuntos, indicaram elevada contribuição europeia (superior a 70%) e baixa contribuição ameríndia (inferior a 10%) na população, enquanto que as análises de mistura individual se mostraram consistentes, com a maioria dos indivíduos apresentando elevada ancestralidade europeia. Os resultados dos marcadores relativos ao sexo (Amelogenina, Y-INDEL e DYS391) foram consistentes com o sexo dos doadores das amostras. As frequências alélicas e parâmetros forenses foram calculados para os STRs, revelando uma alta informatividade. A Probabilidade de Match combinada e o Poder de Exclusão combinado foram de 1,19 x 10-36 e 0,999999999997 respectivamente. Dos 29 STRs autossômicos presentes, seis apresentaram desvios ao equilíbrio de Hardy-Weinberg, refletindo possíveis falhas no sequenciamento e genotipagem destes marcadores / The field of forensic genetics has developed increasingly with the implementation of new sets of DNA markers with higher levels of informativeness. The genetic markers are widely used in human identification as they allow distinguishing individuals with high accuracy. Two of the most commonly used markers are the Short Tandem Repeats (STRs) and the Single Nucleotide Polymorphisms (SNPs). Newer kits such as GlobalFiler (Thermo Fisher Scientific) and PowerPlex Fusion System (Promega) can analyze more than 20 STRs loci at once. When comparing with STRs, the SNPs are less informative and many more loci are needed to reach the same informativeness of STR kits. However, they are advantageous when using degraded DNA samples. The identification sets such as the 52-plex developed by the SNPforID Consortium and the IISNPs have been analyzed in many worldwide populations. With the development of next generation sequencing techniques (NGS Next Generation Sequencing), obtaining DNA profiles has become more accurate and some platforms allow generating profiles of up to 96 individuals simultaneously. The main goal of this study is to analyze 171 markers (Amelogenin, Y-INDEL, 30 STRs and 139 SNPs) in 340 admixed individuals from Ribeirão Preto, SP, using the NGS platform MiSeq Personal Sequencer (Illumina Inc.). This will allow the calculation of allele and genotype frequencies, the verification of adherence to Hardy-Weinbergs equilibrium and the estimation of forensic parameters for each set of marker. Ancestry analysis was performed for the sets of SNPs. The HaloPlex kit (Agilent Technologies, Inc) was used for library preparation including the STRs from the kits GlobalFiler and PowerPlex Fusion System and the SNPs from the SNPforID consortium (52-plex) and IISNPs (92 SNPs) identification sets. A single SNP (rs763869) from the SNPforID set was not analyzed due to technical issues. Only six of the 139 analyzed SNPs presented significant deviation from the Hardy-Weinberg equilibrium expectations, which is expected by chance alone. The SNPs sets exhibited high informativeness, with matchprobability ranging from 6.48 x 10-21 (52-plex) to 4.91 x 10-38 (IISNPs) and exclusion power of 0.9997 (52-plex) and 0.99999997 (IISNPs). In general, ancestry estimates obtained using these sets indicated a high European contribution (higher than 70%) and low Amerindian contribution (less than 10%) in the population sample, while the individual admixture analyses exhibited were highly consistent, with the majority of individuals presenting high European ancestry. The results of the sex markers (Amelogenin, Y-INDEL and DYS391) were in agreement with the reported sexes from sample donors. The allele frequencies and forensic parameters calculated for the STRs revealed high informativeness. The combined match probability and the combined exclusion power were 1.19 x 10-36 and 0.999999999997 respectively. Six of the 29 autosomal STRs presented significant deviations from the HardyWeinberg equilibrium expectations, reflecting possible failures in sequencing and genotyping of these markers
62

Análise de marcadores forenses (STRs e SNPs) rotineiramente empregados na identificação humana utilizando sequenciamento de nova geração / Analysis of forensic markers (STRs and SNPs) routinely used in human identification assays by means of next generation sequencing

Guilherme do Valle Silva 05 October 2018 (has links)
A genética forense vem se desenvolvendo cada vez mais, com novas tecnologias e implementação de novos conjuntos de marcadores de DNA com maiores níveis de informatividade. Os marcadores genéticos são amplamente usados na identificação humana, pois permitem distinguir indivíduos com alta acurácia. Duas classes de marcadores muito utilizadas atualmente são os STRs (Short Tandem Repeats) e os SNPs (Single Nucleotide Polymorphisms). Os STRs são altamente informativos e, portanto, úteis para a prática forense. Kits mais novos como GlobalFiler (Thermo Fisher Scientific) e PowerPlex Fusion System (Promega) apresentam a análise de mais de 20 loci STRs de uma só vez. Já os SNPs, por possuírem sua informatividade mais reduzida (necessita de mais loci analisados), são menos utilizados, porém apresentam vantagem em amostras degradadas de DNA; assim, conjuntos de identificação como o 52-plex desenvolvido pelo consórcio SNPforID e o conjunto IISNPs, vêm sendo estudados em várias populações do mundo. Com o desenvolvimento de técnicas de sequenciamento de nova geração (NGS Next Generation Sequencing) para análise de DNA, a obtenção de perfis de DNA se tornou mais acurada. Algumas plataformas permitem gerar perfis de até 96 indivíduos simultaneamente. Este estudo tem por objetivo principal analisar 171 marcadores genéticos (Amelogenina, Y-INDEL, 30 STRSs e 139 SNPs) em 340 indivíduos miscigenados da região da cidade de Ribeirão Preto (SP) utilizando a plataforma de sequenciamento de nova geração MiSeq Personal Sequencer (Illumina Inc.), bem como calcular as frequências alélicas e genotípicas, verificar a aderência ao equilíbrio de HardyWeinberg e estimar parâmetros forenses para os diferentes conjuntos de marcadores. Análises de ancestralidade foram realizadas para os conjuntos de SNPs. Para o preparo das bibliotecas de amostras a serem sequenciadas, foi utilizado o kit HaloPlex (Agilent Technologies, Inc), onde foram incluídos os marcadores dos kits GlobalFiler e PowerPlex Fusion System, e os SNPs existentes no conjunto do consórcio SNPforID (52-plex) e IISNPs (92 SNPs). De todos os marcadores incluídos no ensaio, apenas um SNP (rs763869) presente no conjunto SNPforID não pôde ser analisado devido a questões técnicas. Dos 139 SNPs analisados apenas seis apresentaram desvios significativos em relação ao equilíbrio de Hardy-Weinberg,número este esperado devido ao acaso. Os conjuntos de SNPs apresentam elevada informatividade com Probabilidade de Match de 6,48 x 10-21 (52-plex) a 4,91 x 10-38 (IISNP), e Poder de Exclusão de 0,9997 (52-plex) e 0,99999997 (IISNP). De modo geral, as inferências de ancestralidade obtida utilizando estes conjuntos, indicaram elevada contribuição europeia (superior a 70%) e baixa contribuição ameríndia (inferior a 10%) na população, enquanto que as análises de mistura individual se mostraram consistentes, com a maioria dos indivíduos apresentando elevada ancestralidade europeia. Os resultados dos marcadores relativos ao sexo (Amelogenina, Y-INDEL e DYS391) foram consistentes com o sexo dos doadores das amostras. As frequências alélicas e parâmetros forenses foram calculados para os STRs, revelando uma alta informatividade. A Probabilidade de Match combinada e o Poder de Exclusão combinado foram de 1,19 x 10-36 e 0,999999999997 respectivamente. Dos 29 STRs autossômicos presentes, seis apresentaram desvios ao equilíbrio de Hardy-Weinberg, refletindo possíveis falhas no sequenciamento e genotipagem destes marcadores / The field of forensic genetics has developed increasingly with the implementation of new sets of DNA markers with higher levels of informativeness. The genetic markers are widely used in human identification as they allow distinguishing individuals with high accuracy. Two of the most commonly used markers are the Short Tandem Repeats (STRs) and the Single Nucleotide Polymorphisms (SNPs). Newer kits such as GlobalFiler (Thermo Fisher Scientific) and PowerPlex Fusion System (Promega) can analyze more than 20 STRs loci at once. When comparing with STRs, the SNPs are less informative and many more loci are needed to reach the same informativeness of STR kits. However, they are advantageous when using degraded DNA samples. The identification sets such as the 52-plex developed by the SNPforID Consortium and the IISNPs have been analyzed in many worldwide populations. With the development of next generation sequencing techniques (NGS Next Generation Sequencing), obtaining DNA profiles has become more accurate and some platforms allow generating profiles of up to 96 individuals simultaneously. The main goal of this study is to analyze 171 markers (Amelogenin, Y-INDEL, 30 STRs and 139 SNPs) in 340 admixed individuals from Ribeirão Preto, SP, using the NGS platform MiSeq Personal Sequencer (Illumina Inc.). This will allow the calculation of allele and genotype frequencies, the verification of adherence to Hardy-Weinbergs equilibrium and the estimation of forensic parameters for each set of marker. Ancestry analysis was performed for the sets of SNPs. The HaloPlex kit (Agilent Technologies, Inc) was used for library preparation including the STRs from the kits GlobalFiler and PowerPlex Fusion System and the SNPs from the SNPforID consortium (52-plex) and IISNPs (92 SNPs) identification sets. A single SNP (rs763869) from the SNPforID set was not analyzed due to technical issues. Only six of the 139 analyzed SNPs presented significant deviation from the Hardy-Weinberg equilibrium expectations, which is expected by chance alone. The SNPs sets exhibited high informativeness, with matchprobability ranging from 6.48 x 10-21 (52-plex) to 4.91 x 10-38 (IISNPs) and exclusion power of 0.9997 (52-plex) and 0.99999997 (IISNPs). In general, ancestry estimates obtained using these sets indicated a high European contribution (higher than 70%) and low Amerindian contribution (less than 10%) in the population sample, while the individual admixture analyses exhibited were highly consistent, with the majority of individuals presenting high European ancestry. The results of the sex markers (Amelogenin, Y-INDEL and DYS391) were in agreement with the reported sexes from sample donors. The allele frequencies and forensic parameters calculated for the STRs revealed high informativeness. The combined match probability and the combined exclusion power were 1.19 x 10-36 and 0.999999999997 respectively. Six of the 29 autosomal STRs presented significant deviations from the HardyWeinberg equilibrium expectations, reflecting possible failures in sequencing and genotyping of these markers
63

Genetic Polymorphisms Of Alcohol Inducible Cyp2e1 In Turkish Population

Ulusoy, Gulen 01 January 2005 (has links) (PDF)
Cytochrome P4502E1 (CYP2E1), the ethanol-inducible isoform of cytochrome P450 superfamily, catalyzes many low molecular weight endogenous and exogenous compounds, including ethanol, acetone, drugs like acetaminophen and chlorzoxazone, and industrial solvents like benzene and styrene, most of which are carcinogenic. Besides, it has a high capacity to produce reactive oxygen species. CYP2E1 is induced by ethanol and isoniazid, as well by some pathophysiological conditions like diabetes and starvation. CYP2E1 gene shows genetic polymorphisms which are thought to play a major role in interindividual variability in drug response and in susceptibility to chemical-induced diseases, like several types of cancers. It is well established that CYP2E1 polymorphisms vary markedly in frequency among different ethnic and racial groups. Therefore, in this study, the frequency of two important CYP2E1 polymorphisms / the single nucleotide polymorphisms C-1019T / G-1259C in 5&rsquo / -flanking region and T7678A poymorphism in intron 6, in Turkish population was investigated. For this purpose, whole blood samples were collected from 132 healthy volunteers representing Turkish population and genomic DNA for each subject was isolated in intact form. The genotypes were determined by PCR amplification of corresponding regions followed by restriction endonuclease RsaI, PstI (for C-1019T / G-1259C SNPs) and DraI (for T7678A SNP) digestions. The genotype frequencies, for C-1019T / G-1259C SNPs, which are in complete linkage disequilibrium, were investigated on 116 DNA samples, and determined as 97.4% for homozygous wild type (c1/c1), 2.6% for heterozygotes (c1/c2) and 0.0% for homozygous mutants (c2c2). The allele frequency of wild type allele (c1) was calculated as 98.7% and that of mutated allele (c2) as 1.3%. The genotype frequencies for T7678A SNP, investigated in 108 DNA samples were determined as 80.6% for homozygous wild type (DD), 19.4% for heterozygotes (CD) and 0.0% for homozygous mutants (CC). The corresponding allele frequencies were 90.3% for wild type allele (D), and 9.7% for mutated allele (C). Genotype frequencies of both polymorphisms fit Hardy-Weinberg equation and showed no significant difference with respect to gender. The genotype distributions of both polymorphisms showed similarity when compared to other Caucasian populations like French, Swedish, German, and Italian populations, while both polymorphisms studied differed significantly from Chilean, Japanese, Taiwanese and Chinese populations, as compared with Chi-Square test.
64

Genotipagem de linhagens de Yersinia spp. por high-resolution melting analysis / Genotyping of Yersinia strains by high-resolution melting analysis

Roberto Antonio de Souza 23 May 2013 (has links)
O gênero Yersinia pertence à família Enterobacteriaceae e compreende 17 espécies. Y. pestis, Y. pseudotuberculosis e Y. enterocolitica são reconhecidamente patógenos de humanos e animais. Y. pestis cause a peste. Y. pseudotuberculosis e Y. enterocolitica são agentes causadores, sobretudo, de gastroenterites transmitidas por água e alimentos. As demais 14 espécies são, usualmente, consideradas não-patogênicas, com exceção de Y. ruckeri sorogrupo O:1 que causa infecções em peixes. Nas últimas décadas, a tipagem molecular tornou-se uma importante ferramenta nos estudos filogenéticos de numerosos micro-organismos e o desenvolvimento de sistemas de tipagem rápidos e baratos pode facilitar os estudos epidemiológicos de infecções bacterianas. No presente estudo objetivou-se desenvolver um método de genotipagem de Yersinia spp. baseado em high-resolution melting analysis (HRMA) para diferenciar os single-nucleotide polymorphisms (SNPs) presentes nas sequências dos genes 16S rRNA, glnA, gyrB, hsp60 e recA e aplicá-lo na tipagem de 40 linhagens de Y. pseudotuberculosis e 50 linhagens de Y. enterocolitica, bem como separar por HRMA as espécies Y. pseudotuberculosis e Y. enterocolitica. Os SNPs foram determinados nas sequências dos loci acima citados a partir de um conjunto de 119 linhagens de Yersinia spp. depositadas no GenBank/EMBL/DDBJ. Foram encontrados nas sequências dos genes analisados de Y. pseudotuberculosis, Y. enterocolitica, Y. bercovieri, Y. rohdei, Y. intermedia, Y. mollaretii e Y. ruckeri 10, 10, 9, 6, 4, 1 e 1 SNPs, respectivamente. Nenhum SNP foi encontrado nas sequências analisadas de Y. pestis e um grande número de SNPs foi encontrado nas sequências analisadas de Y. frederiksenii, Y. kristensenii e Y. massiliensis, o que impossibilitou a genotipagem dessas espécies por HRMA. As demais espécies não foram analisadas. Foram desenhados pares de primers para flanquear os SNPs encontrados em cada espécie de Yersinia testada. Usando um conjunto de primers espécie-específicos, a diversidade genética de cada espécie de Yersinia foi determinada por HRMA e a análise filogenética foi baseada na sequência concatenada composta pelos nucleotídeos identificados em cada fragmento analisado. O agrupamento foi realizado com o software BioNumerics usando o método UPGMA com 1.000 replicatas de bootstrap. A árvore filogenética ii construída para Y. pseudotuberculosis agrupou as linhagens em clusters bio-sorogrupo específicos. As linhagens do bio-sorogrupo 1/O:1 foram agrupadas em um cluster e as linhagens do bio-sorogrupo 2/O:3 em outro. A árvore filogenética construída para Y. enterocolitica agrupou as linhagens em três grupos. As linhagens altamente patogênicas, do biotipo 1B, foram agrupadas em um cluster, as linhagens de média patogenicidade, dos biotipos 2, 3, 4 e 5, foram agrupadas em um segundo cluster e as linhagens consideradas nãopatogênicas, do biotipo 1A, foram agrupadas em um terceiro cluster. O agrupamento encontrado em Y. pseudotuberculosis e Y. enterocolitica foi consistente com o perfil patogênico característico dessas duas espécies. Nenhuma correlação epidemiológica significativa foi encontrada no agrupamento de Y. bercovieri, Y. rohdei, Y. intermedia, Y. mollaretii e Y. ruckeri de acordo com os resultados de HRMA. Ademais, o método de HRMA aqui desenvolvido foi capaz de separar as espécies Y. pseudotuberculosis e Y. enterocolitica. O método de HRMA desenvolvido nesse estudo pode ser usado como uma alternativa para a genotipagem e para a diferenciação de Y. pseudotuberculosis de Y. enterocolitica. Esse método também pode complementar os métodos baseados em sequências e facilitar os estudos epidemiológicos dessas duas espécies de Yersinia. / The genus Yersinia belongs to the family Enterobacteriaceae and comprises 17 species. Y. pestis, Y. pseudotuberculosis and Y. enterocolitica are well recognized human and animal pathogens. Y. pestis causes plague. Y. pseudotuberculosis and Y. enterocolitica are, usually, causative agents of food-waterborne gastroenteritis. The other 14 Yersinia species are considered to be non-pathogenic, with the exception of Y. ruckeri serogroup O:1 which causes infections in fishes. In the last few decades, molecular typing has become an important tool in phylogenetic studies of several microorganisms and the development of fast and inexpensive typing systems can facilitate epidemiological studies of bacterial infections. The present study aimed to develop a method of Yersinia spp. genotyping based on high-resolution melting analysis (HRMA) in order to differentiate the single-nucleotide polymorphisms (SNPs) present in the 16S rRNA, glnA, gyrB, hsp60 and recA sequences and apply it in the typing of 40 Y. pseudotuberculosis strains and 50 Y. enterocolitica strains, as well as, to separate by HRMA the Y. pseudotuberculosis and Y. enterocolitica species. The SNPs were determined in the sequences of the aforementioned loci using a set of 119 Yersinia strains deposited in the GenBank/EMBL/DDBJ database. It were found in the gene sequences analyzed of Y. pseudotuberculosis, Y. enterocolitica, Y. bercovieri, Y. rohdei, Y. intermedia, Y. mollaretii and Y. ruckeri 10, 10, 9, 6, 4, 1 and 1 SNPs, respectively. No SNPs was found in the analyzed sequences of Y. pestis and a large number of SNPs were found in the analyzed sequences of Y. frederiksenii, Y. kristensenii and Y. massiliensis what prevented their genotyping by HRMA. The remaining Yersinia species were not analyzed. It was designed primer pairs to flank the SNPs found in each Yersinia species tested. Using a specie-specific set of primers, the genetic diversity of each Yersinia species used was determined by HRMA and the phylogenetic analysis was based on the concatenated sequence composed by the nucleotides identified in each fragment analyzed. Clustering was performed with the software package BioNumerics using UPGMA method and 1,000 bootstrap replicates. The phylogenetic tree constructed for Y. pseudotuberculosis grouped the strains into bio-serogroups specific clusters. The strains of 1/O:1 bio-serogroup were grouped into one cluster and the strains of 2/O:3 bio-serogroup into iv other cluster. The phylogenetic tree constructed for Y. enterocolitica grouped the strains in three clusters. The highly pathogenic strains, of biotype 1B, were grouped into one cluster, the moderate pathogenic strains, of biotypes 2, 3, 4 and 5, were grouped into a second cluster and, the non-pathogenic strains, of biotype 1A, were grouped into a third cluster. The clusterization of Y. pseudotuberculosis and Y. enterocolitica were consistent with the pathogenic profile characteristic of these two Yersinia species. No significant epidemiological correlation was found in the grouping of Y. bercovieri, Y. rohdei, Y. intermedia Y. mollaretii and Y. ruckeri according to HRMA results. Moreover, the HRMA-based method develop here was able to separate the Y. pseudotuberculosis and Y. enterocolitica species. The HRMA assay developed in this study can be used as an alternative for the genotyping and the differentiation of Y. pseudotuberculosis and Y. enterocolitica. This method can also complement sequence-based methods and facilitate epidemiological studies of these two Yersinia species.
65

Efeito de polimorfismos no receptor do hormônio do crescimento (GHR) e no fator de crescimento semelhante à insulina tipo 1 (IGF-I) no intervalo parto-concepção e produção de leite de vacas da raça Holandês / Effect of growth hormone receptor (GHR) and insulin-like growth factor 1 (IGF-I) polymorphisms on calving conception interval and milk production of Holstein cows

Hax, Lucas Teixeira 27 February 2013 (has links)
Made available in DSpace on 2014-08-20T13:32:47Z (GMT). No. of bitstreams: 1 dissertacao_lucas_teixeira_hax.pdf: 388762 bytes, checksum: c93c16af033ccd2aa4ff52ec81723de9 (MD5) Previous issue date: 2013-02-27 / The genes of the somatotropic axis, which act regulating the metabolism and physiology of the mammals, present polymorphism associated to some characteristics of economical interest, such as reproductive performance and milk production. Such factors may be influenced by the mutation on only one nucleotide in the base sequence of the gene of the growth hormone receptor (GHR), which may alter the density of GHR on the hepatic tissue. Changes in the coupling of the growth hormone (GH) in the hepatic tissue alter the serum concentration of the insulin-like growth factor 1 (IGF-I), as IGF-I is produced mainly by the liver when it is stimulated by the growth hormone. Different studies have evaluated the effect of polymorphisms in the gene responsible for encoding IGF-I on the reproductive performance and milk production of high production dairy cows. Among other functions, the IGF-I mediates the effects of gonadotropins on the follicular cells, stimulating the growth and differentiation of theca and granulosa follicular cells, playing also a significant role on the final growth and maturation of the dominant follicle. Furthermore, high serum IGF-I concentrations are associated with a earlier return to cyclicity post partum in high yield dairy cows. Thus, the objective of this study was to evaluated the relevance of the mutations in GHR and IGF-I on the calving conception interval, number of inseminations per pregnancy and milk production in Holstein cows. One hundred and fifty five Holstein cows, submitted to a semi extensive management system, subjected to fixed-time artificial insemination (TAI) that got pregnant up to 250 days in milk in 2011, were selected. Among the animals tested, 29% presented GHR AluI (+ / +), 57.5% AluI (+ / -) and 13.5% AluI (- / -) genotype. 34.9% presented IGF-I SnaBI (+ / +), 45.8% SnaBI (+ / -) and 19.3% SnaBI (- / -) genotype. No association was observed between GHR AluI and IGF-I SnaBI genotypes and calving conception interval, number of inseminations per pregnancy and milk yield (P> 0.05). Likewise, there was no association between the interaction of GHR AluI and IGF-I SnaBI genotypes and calving conception interval, number of inseminations per pregnancy and milk yield (P> 0.05). Finally, further studies are necessary to better understand the relevance of GHR AluI and IGF-I SnaBI genotypes to the calving conception interval number of inseminations per pregnancy and milk production in Holstein cows. / Os genes do eixo somatotrópico, que atuam na regulação do metabolismo e fisiologia dos mamíferos, apresentam polimorfismos associados a algumas características de interesse econômico, como desempenho reprodutivo e produção de leite. Tais fatores podem ser influenciados por mutações de apenas um nucleotídeo na sequência de bases do gene do receptor do hormônio do crescimento (GHR), que podem alterar a expressão do GHR no tecido hepático. Mudanças no acoplamento do hormônio do crescimento (GH) no tecido hepático alteram a concentração sérica de fator de crescimento semelhante à insulina tipo1 (IGF-I), visto que o IGF-I tem sua produção endócrina principalmente no fígado mediante estimulação do hormônio do crescimento. Diversos trabalhos têm estudado o efeito de polimorfismos no gene que codifica para IGF-I no desempenho reprodutivo e produção de leite de vacas leiteiras de alta produção. Entre outras funções, o IGF-I atua como mediador dos efeitos das gonadotrofinas nas células foliculares, estimulando o crescimento e diferenciação das células da teca e da granulosa foliculares, apresentando também um importante papel no crescimento final e na maturação do folículo dominante. As altas concentrações sanguíneas de IGF-I estão também associadas a um retorno à ciclicidade mais precoce de vacas leiteiras pós-parto de alta produção. Dessa forma, o objetivo deste estudo foi avaliar a importância de mutações no GHR e IGF-I no desempenho zootécnico, IPC, número de inseminações por prenhez e produção de leite em vacas da raça Holandês. Foram avaliadas 155 vacas da raça Holandês em sistema semi extensivo submetidas à inseminação artificial em tempo fixo (IATF) e que conceberam até 250 dias em lactação no ano de 2011. Entre os animais analisados, 29% apresentaram o genótipo GHR AluI, (+/+), 57,5% AluI (+/-) e 13,5% AluI (-/-). Já para o IGF-I SnaBI 34,9% apresentaram o genótipo IGF-I SnaBI (+/+), 45,8% SnaBI (+/-) e 19,3% SnaBI (-/-). Não foi observada associação entre os genótipos GHR AluI e IGF-I SnaBI e o intervalo parto-concepção, número de inseminações por prenhez e produção de leite (P>0,05). Da mesma forma, não houve associação entre a interação dos genótipos de GHR AluI e IGF-I SnaBI e o intervalo parto-concepção, número de inseminações por prenhez e produção de leite (P>0,05). Finalmente, novos estudos avaliando uma maior população de animais são necessários para elucidar a importância dos genótipos de GHR AluI e IGF-I SnaBI no intervalo parto-concepção, número de inseminações por prenhez e produção de leite.
66

Etude génotypique et phénotypique des polymorphismes du récepteur du complément de type 1 (CR1,CD35) dans la maladie d’Alzheimer / Genotype and phenotype study of complement receptor type 1 polymorphisms (CR1, CD35) in Alzheimer’s disease

Mahmoudi, Abd-elrachid 02 June 2015 (has links)
Les études d'association pangénomiques ont permis d'identifier de nouveaux loci, dont le gène CR1 comme associé au risque de maladie d'Alzheimer (MA). Le récepteur du complément de type 1 (CR1) est une glycoprotéine transmembranaire, présente notamment à la surface des érythrocytes (CR1E), mais également dans le plasma sous forme soluble (CR1s). Le CR1 peut prendre des formes fonctionnelles différentes, qui pourraient conférer des niveaux de risque différents, voire suggérer des mécanismes physiopathologiques de la MA. Si la relation entre CR1 et MA est aujourd'hui connue, son mécanisme reste énigmatique.L'objectif principal de cette thèse était de corréler aux données génétiques (single nucleotide polymorphisms, polymorphismes de longueur, polymorphismes de densité), des éléments phénotypiques acquis comme la densité du CR1E ou le CR1S. D'une part, notre étude a montré grâce à deux méthodes différentes, que la MA était associée à une densité basse de l'isoforme long de CR1 (CR1*2) et suggérait l'existence d'allèle silencieux de CR1. D'autre part, nous avons montré que même si les critères génétiques étaient respectés, certains phénotypes pourraient être acquis au cours de la maladie. Nos résultats suggèrent que la MA résulterait plus d'une insuffisance d'épuration des dépôts amyloïdes, que d'une réponse excessive dont la réaction inflammatoire serait délétère. Bien que cette recherche génotypique et phénotypique, à potentiel physiopathologique, nécessite des investigations à plus grande échelle, elle pourra ouvrir la voie à des nouvelles pistes thérapeutiques qui ne peuvent être envisagées aujourd'hui faute de vue claire du ou des mécanismes en cause. / Genome-wide association studies have identified new loci, including the CR1 gene, as being associated with Alzheimer's disease (AD) risk. The complement receptor type 1 (CR1) is a transmembrane glycoprotein found on the surface of erythrocytes (CR1E), and also in the plasma in soluble form (CR1s). CR1 can have different functional forms that may confer different risk levels, or even suggest pathophysiological mechanisms of AD. Indeed, the relation between CR1 and AD is now well established, the mechanism of this association remains to be elucidated.The main objective of this thesis was to correlate acquired phenotype elements, such as density of CR1E (number of CR1 antigenic sites per erythrocyte) or CR1s with genetic data (single nucleotide polymorphisms, length and density polymorphisms). Firstly, our study showed using two different methods that AD is associated with low density of the long CR1 isoform (CR1*2) and suggested the possible existence of silent CR1 alleles. Secondly, we showed that although genetic criteria were met, some phenotypes could be acquired during the course of the disease. Our findings suggest that AD stems more from insufficient clearance of amyloid deposits than from excessive response whose inflammatory reaction might be deleterious. Although this genetic and phenotypic study with pathophysiological potential still require further investigation on a larger scale, she could pave the way towards new therapeutic avenues that currently remain elusive in the absence of a clear overview of the mechanisms involved.
67

Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene / Rencia van der Sluis

Van der Sluis, Rencia January 2015 (has links)
Thorough investigation of the glycine conjugation pathway has been neglected over the last 30 years. Environmental factors, nutrition, and the chronic use of medications are increasing the exposure of humans to benzoate and drugs that are metabolized to acyl-CoA intermediates. Glycine conjugation of mitochondrial acyl-CoAs, catalysed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterised in detail. Therefore, one of the objectives of this thesis was to develop a better understanding of glycine conjugation and its role in metabolism. In humans and animals a number of endogenous and xenobiotic organic acids are conjugated to glycine. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, recently it was proposed that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilised as neurotransmitters in the central nervous systems of animals. The glycine deportation hypothesis was based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. A thorough review of the literature for this thesis showed that the major role of glycine conjugation, however, is to dispose of the end products of phenylpropionate metabolism. The review also introduced the new perspective that mitochondrial glycine conjugation prevents the accumulation of benzoate in the mitochondrial matrix by forming hippuric acid a less lipophilic conjugate that can be more readily transported out of the mitochondria. Although organic anion transporters can export benzoate from the matrix, this process would likely be futile because benzoic acid can simply diffuse back into the matrix. Hippurate, however, is significantly less lipophilic and therefore less capable of diffusing into the matrix. It is therefore not the transport out of the mitochondrial matrix that is facilitated by glycine conjugation, but rather the ability of the glycine conjugates to re-enter the matrix that is decreased. Lastly, glycine conjugation of benzoate also exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated. To date, no defect of the glycine conjugation pathway has been reported and this, together with the fact that GLYAT plays an important role in hepatic metabolism, suggests that this pathway is essential for survival. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development and mitochondrial energy metabolism. Significant interindividual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. The main aim of this thesis was to investigate and characterise the genetic variation in the coding region of the GLYAT gene. This was accomplished by firstly, investigating the influence of non-synonymous single nucleotide polymorphisms (SNPs) on the enzyme activity of a recombinant human GLYAT and secondly, by analysing the level of genetic variation in the coding region of the GLYAT gene using existing worldwide population data. To investigate the influence of non-synonymous SNPs in the GLYAT gene on the enzyme activity, a recombinant human GLYAT was prepared, and characterised. Site-directed mutagenesis was used to generate six variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. The results showed that SNP variations in the human GLYAT gene can influence the kinetic properties of the enzyme. The genetic variation data of the human GLYAT open reading frame (ORF) available on public databases was investigated by formulating the hypothesis that due to the essential nature of the glycine conjugation pathway, the genetic variation in the ORF of the GLYAT gene should be low and that deleterious alleles will be found at low frequencies. Data from the i) 1000 Genome Project, ii) the HapMap Project, and iii) the Khoi-San/Bantu Sequencing Project was downloaded from available databases. Sequence data of the coding region of a small cohort of South African Afrikaner Caucasian individuals was also generated and included in the analyses. In the GLYAT ORF of the 1537 individuals analysed, only two haplotypes (S156 and T17S156) out of 14 haplotypes were identified in all populations as having the highest haplotype frequencies (70% and 20% respectively). The S156C199 and S156H131 haplotypes, which have a deleterious effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. The results of this study indicated that the GLYAT ORF is remarkably conserved, which supports the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. The findings presented in this thesis highlight the importance that future investigations should determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2015
68

Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene / Rencia van der Sluis

Van der Sluis, Rencia January 2015 (has links)
Thorough investigation of the glycine conjugation pathway has been neglected over the last 30 years. Environmental factors, nutrition, and the chronic use of medications are increasing the exposure of humans to benzoate and drugs that are metabolized to acyl-CoA intermediates. Glycine conjugation of mitochondrial acyl-CoAs, catalysed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterised in detail. Therefore, one of the objectives of this thesis was to develop a better understanding of glycine conjugation and its role in metabolism. In humans and animals a number of endogenous and xenobiotic organic acids are conjugated to glycine. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, recently it was proposed that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilised as neurotransmitters in the central nervous systems of animals. The glycine deportation hypothesis was based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. A thorough review of the literature for this thesis showed that the major role of glycine conjugation, however, is to dispose of the end products of phenylpropionate metabolism. The review also introduced the new perspective that mitochondrial glycine conjugation prevents the accumulation of benzoate in the mitochondrial matrix by forming hippuric acid a less lipophilic conjugate that can be more readily transported out of the mitochondria. Although organic anion transporters can export benzoate from the matrix, this process would likely be futile because benzoic acid can simply diffuse back into the matrix. Hippurate, however, is significantly less lipophilic and therefore less capable of diffusing into the matrix. It is therefore not the transport out of the mitochondrial matrix that is facilitated by glycine conjugation, but rather the ability of the glycine conjugates to re-enter the matrix that is decreased. Lastly, glycine conjugation of benzoate also exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated. To date, no defect of the glycine conjugation pathway has been reported and this, together with the fact that GLYAT plays an important role in hepatic metabolism, suggests that this pathway is essential for survival. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development and mitochondrial energy metabolism. Significant interindividual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. The main aim of this thesis was to investigate and characterise the genetic variation in the coding region of the GLYAT gene. This was accomplished by firstly, investigating the influence of non-synonymous single nucleotide polymorphisms (SNPs) on the enzyme activity of a recombinant human GLYAT and secondly, by analysing the level of genetic variation in the coding region of the GLYAT gene using existing worldwide population data. To investigate the influence of non-synonymous SNPs in the GLYAT gene on the enzyme activity, a recombinant human GLYAT was prepared, and characterised. Site-directed mutagenesis was used to generate six variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. The results showed that SNP variations in the human GLYAT gene can influence the kinetic properties of the enzyme. The genetic variation data of the human GLYAT open reading frame (ORF) available on public databases was investigated by formulating the hypothesis that due to the essential nature of the glycine conjugation pathway, the genetic variation in the ORF of the GLYAT gene should be low and that deleterious alleles will be found at low frequencies. Data from the i) 1000 Genome Project, ii) the HapMap Project, and iii) the Khoi-San/Bantu Sequencing Project was downloaded from available databases. Sequence data of the coding region of a small cohort of South African Afrikaner Caucasian individuals was also generated and included in the analyses. In the GLYAT ORF of the 1537 individuals analysed, only two haplotypes (S156 and T17S156) out of 14 haplotypes were identified in all populations as having the highest haplotype frequencies (70% and 20% respectively). The S156C199 and S156H131 haplotypes, which have a deleterious effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. The results of this study indicated that the GLYAT ORF is remarkably conserved, which supports the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. The findings presented in this thesis highlight the importance that future investigations should determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2015
69

Association of single nucleotide polymorphisms in the leptin gene and segregation by ultrasound backfat at weaning on carcass performance in steers

Breiner, Ryan Michael January 1900 (has links)
Master of Science / Department of Animal Sciences and Industry / Twig T. Marston / One hundred ninety-three crossbred steers from two herds were used to determine the association of leptin gene polymorphisms and effects of feedlot management of lean and fat steers on carcass performance. Steers were sorted into FAT and LEAN groups by ultrasound backfat at weaning and randomly assigned to a finishing phase. Steers were assigned to a backgrounding phase (BACK) and were fed a forage-based diet for 90 days or directly entered a feedlot phase (FEED). Genotypes were determined by IGENITY® (Atlanta, GA) for a panel of nine single nucleotide polymorphisms (SNP) in the leptin gene (UASMS1, UASMS2, C963T, E2FB, A1457G, and A252T), leptin receptor (T945M), growth hormone receptor (G200A), and fat metabolism enzyme (K232A). Initial backfat (BF) means for the FAT and LEAN group were 3.4 mm and 1.8 mm, respectively. Mean on-test weight was heavier for FAT (306.5 kg) than LEAN (292.9 kg). Age-adjusted hot carcass weights (HCWT) were heavier for LEAN/BACK when compared to FAT/FEED and FAT/BACK (P<0.05). Dressing percent for the FAT/FEED group tended to be higher (P<0.10) over all groups except LEAN/BACK. Steers that went directly to the feedlot had higher marbling scores than backgrounded groups. FAT/FEED had higher 12th rib BF than the other contemporaries. None of the SNPs were useful for predicting ultrasound BF at weaning. Some association was detected with UASMS2 and HCWT (P<0.10) resulting in an 11 kg difference between genotype CC and CT (P<0.05). Five of the leptin polymorphisms (UASMS1, UASMS2, A1457G, C963T, and E2FB) were associated with adjusted carcass BF (P=0.01, 0.06, 0.01, 0.01, and 0.01, respectively) and calculated yield grade (P<0.01). A252T was associated with REA, and genotype TT was larger than AA and AT (P<0.05). This study suggests that segregation by initial fatness estimates and feedlot management strategies has the opportunity to increase HCWT by 35 kg. Sorting cattle upon feedlot entry by ultrasound BF and segregation using genetic markers are useful tools that can assist in the estimation of carcass composition in the live animal. With additional research, the possibility exists to incorporate genetic markers into feedlot selection to assist in marketing decisions.
70

Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

Serao, Nick, Gonzalez-Pena, Dianelys, Beever, Jonathan, Faulkner, Dan, Southey, Bruce, Rodriguez-Zas, Sandra January 2013 (has links)
BACKGROUND:General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency - residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) - were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results.RESULTS:For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value<0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value<0.001) including, 9nucleotide binding / ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency.CONCLUSIONS:The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet-dependent associations between SNPs and feed efficiency suggest that further refinement of variant panels require the consideration of the breed and management practices. The unique genomic variants associated with the one- and two-step indicators suggest that both types of indicators offer complementary description of feed efficiency that can be exploited for genome-enabled selection purposes.

Page generated in 0.0583 seconds