• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 35
  • 22
  • 16
  • 15
  • 14
  • 11
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 310
  • 310
  • 92
  • 87
  • 66
  • 61
  • 49
  • 39
  • 35
  • 35
  • 34
  • 33
  • 33
  • 33
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigação do crescimento de fibras monocristalinas de LiLa(WO4)2 codopadas com Yb3+ e Er3+ para estudos espectroscópicos / Growth study of Yb3+ and Er3+-doped LiLa(WO4)2 single crystal fibers for spectroscopic characterization

Denaldi, Rafael Lima 21 June 2018 (has links)
Neste trabalho foi estudado o crescimento de fibras da matriz LiLa(WO4)2 (LLW) pura e co-dopada com íons Yb3+ e Er3+ via micro pulling-down. Foram crescidas fibras homogêneas e transparentes de LiLa(WO4)2:Yb3+:Er3+ com teor de dopante de 2, 5, 7, 10 e 15 mol% de Yb3+, todas co-dopadas com teor de 0,5 mol% de Er3+, com 1mm de diâmetro e até 22 mm de comprimento. Partindo-se da dopagem de 20 mol% não foi possível o crescimento de fibras com a mesma qualidade das demais, ocorrendo segregação e, possivelmente, formação de fase secundária. A temperatura de fusão dos compostos diminui com a adição de Yb3+, indo de 1020°C para o LLW puro, para 991°C com dopagem de 20 mol%. Para a análise de espectroscopia de emissão, as fibras foram excitadas com laser na região do infravermelho em 972 nm, sendo observada a emissão dos íons Er3+ via conversão ascendente. Foram observadas emissões referentes às transições 4S3/2 → 4I15/2 (centroide em 550 nm), 2H11/2 → 4I15/2 (527 nm) e 4F9/2 → 4I15/2 (653 nm); sendo a primeira a mais intensa. A eficiência de emissão aumentou de ~7% para a fibra pura, para 36% na fibra com 15 mol% de Yb3+. Foi encontrado que, para a maior intensidade de emissão, a quantidade ideal de Yb3+ deve ser de 11,5 mol%. / In the current work, was studied the growth of pure and Yb3+ and Er3+-doped LiLa(WO4)2 (LLW) by micro pulling-down technique. Were grown homogeneous and transparent fibers of Yb3+:Er3+:LiLa(WO4)2 with a dopant content of 2, 5, 7, 10 and 15 mol% of Yb3+, all co-doped with 0.5 mol% Er3+, 1 mm diameter and up to 22 mm length. It was not possible grow fibers with 20 mol% of Yb3+ due segregation and, possibly, formation of secondary phases. Noticed the melting temperature of the doped compounds decreases with the addition of Yb3+, from 1020 °C (pure LLW) to 991 °C (20 mol% Yb-doped). For emission studies, the fibers were excited in the infrared region at 972 nm and up conversion emission of Er3+ ions was registered. Emissions referring to transitions 4S3/2 → 4I15/2 (centroid at 550 nm), 2H11/2 → 4I15/2 (527 nm) and 4F9/2 → 4I15/2 (653 nm) were observed; the first one being the most intense. Emission efficiency increased from ~ 7% in pure fiber to 36% in doped fiber with 15 mol% of Yb3+. It was found that, for the highest emission intensity, the ideal amount of Yb3+ should be 11.5 mol%.
62

Environmental Effects on Nano-Wear of Gold and KBr Single Crystal

Pendergast, Megan 07 March 2008 (has links)
In order to successfully incorporate the tremendous possibilities of nanoscale applications into devices and manufacturing, significant studies need to be conducted of the properties and mechanics of materials of this small scale. In this thesis, the effect of repeated scanning of KBr, aluminum, and gold was studied by using a nanoindenter and Atomic Force Microscope (AFM) in varying environments. Additional research was performed to study the environmental effects of gold film scratching using a Taber Shear/Scratch Tester. Scanning of KBr single crystal surface in air with a diamond tip in the Hysitron Triboindenter formed surface ripples 100 nm high, 1 micron apart. It has been observed that the nanoripple's initial height and period increase with the number of repeated scans. The surface ripples form perpendicular to the scanning direction, beginning at the bottom of sloped samples and working their way up the entire scan area. The addition of water to a wear experiment on gold film produced considerably deeper wear areas than its ambient air counterpart in both scanning machines. Scratch testing with a conical diamond tip of 77 µm radius with 125 g normal load also produced deeper wear tracks in water than in ambient air conditions. Several mechanisms may be responsible for the ripples formation, including dislocation dynamics, chatter, piezo hysteresis and others. Most likely there is a combination of effects, with a clear differentiation between nanoripple's origination and propagation. Mechanisms responsible for rippling, including system dynamic response and stick slip behavior are investigated. Topography modification appears to be the main result of ambient wear tests at the nanoscale, whereas much higher wear rate and nanoripples are observed in water. It is possible that this moisture is assisting grain fracture and pull off.
63

Modulations in Intermetallic Families of Compounds

Lind, Hanna January 2004 (has links)
<p>This thesis is based on a study of five distinct intermetallic systems with the aim of expanding the general knowledge of aperiodically modulated crystal structures. Families of compounds that contain a variety of superstructures together with incommensurately modulated structures have been investigated mainly by means of single crystal X-ray diffraction and higher dimensional structure models.</p><p>A uniform (3+1)-dimensional structure for Bi-Se phases was developed with the composition as a single variable. The structure description is based on a cubic NaCl type structure with homoatomic layer stackings. It is shown by computational modelling that the formation energies of bismuth selenides with more than 40 at. % Bi are close to zero, a result that supports the idea of a continuous series of stackings corresponding to an ordered solid solution of Bi in Bi<sub>2</sub>Se<sub>3</sub>.</p><p>The Nowotny chimney-ladder structures are described with a (3+1)-dimensional composite structure, valid for all such compounds regardless of the included elements, the composition or the valence electron concentration. A new member is added to this family by the ZrBi<sub>1.62</sub> compound. The modulation is believed to arise as a secondary effect of the criteria of a fixed electron count.</p><p>A symmetry analysis is presented for the <i>RE</i><sub>1+ε</sub>(MB)<sub>4</sub> (<i>RE</i> = rare earth elements, M = iron metal elements) family of compounds and a uniform (3+1)-dimensional composite structure description has been developed. The modulation may be due to the presence of unusually short contacts between the <i>RE</i> channel atoms, giving rise to a rotational modulation of the (MB)<sub>4</sub> tetraederstern chains.</p><p>A (3+1)-dimensional incommensurate structure has been determined for the novel δ<sub>1</sub> – CoZn compound. The structure displays a unique assembly of fused icosahedra and the modulation is induced by geometric strain.</p><p>The structure of the K(PtSi)<sub>4</sub> compound was re-determined. Despite a close kinship with the <i>RE</i><sub>1+ε</sub>(MB)<sub>4</sub> compounds, this structure is not modulated.</p>
64

Modulations in Intermetallic Families of Compounds

Lind, Hanna January 2004 (has links)
This thesis is based on a study of five distinct intermetallic systems with the aim of expanding the general knowledge of aperiodically modulated crystal structures. Families of compounds that contain a variety of superstructures together with incommensurately modulated structures have been investigated mainly by means of single crystal X-ray diffraction and higher dimensional structure models. A uniform (3+1)-dimensional structure for Bi-Se phases was developed with the composition as a single variable. The structure description is based on a cubic NaCl type structure with homoatomic layer stackings. It is shown by computational modelling that the formation energies of bismuth selenides with more than 40 at. % Bi are close to zero, a result that supports the idea of a continuous series of stackings corresponding to an ordered solid solution of Bi in Bi2Se3. The Nowotny chimney-ladder structures are described with a (3+1)-dimensional composite structure, valid for all such compounds regardless of the included elements, the composition or the valence electron concentration. A new member is added to this family by the ZrBi1.62 compound. The modulation is believed to arise as a secondary effect of the criteria of a fixed electron count. A symmetry analysis is presented for the RE1+ε(MB)4 (RE = rare earth elements, M = iron metal elements) family of compounds and a uniform (3+1)-dimensional composite structure description has been developed. The modulation may be due to the presence of unusually short contacts between the RE channel atoms, giving rise to a rotational modulation of the (MB)4 tetraederstern chains. A (3+1)-dimensional incommensurate structure has been determined for the novel δ1 – CoZn compound. The structure displays a unique assembly of fused icosahedra and the modulation is induced by geometric strain. The structure of the K(PtSi)4 compound was re-determined. Despite a close kinship with the RE1+ε(MB)4 compounds, this structure is not modulated.
65

Crystal structure studies of a new series of molybdovanadate polyanions and some related vanadates

Björnberg, Arne January 1980 (has links)
The determination of complexes formed in weakly acidic aqueous solutions containing pentavalent vanadium as well as hexavalent molybdenum has proved diffi cui t due to slow equilibria and 1 imi ted sol ubi 1 i ty of especially the vanadium species. The formation of several different polynuclear complexes with a very varied molybdenum/vanadium ratio also complicates the interpretation of Potentiometrie data. In order to clarify the picture of complexes formed and provide starting points for equilibrium calculations single-crystal X-ray studies were made on crystals obtained from âqueous solutions. In addition, these studies can provide information on bonding conditions and possibly formation mechanisms for molybdovanadate polyanions. Crystals were synthesized by slow evaporation of aqueous solutions. Solutions with varied molybdenum/vanadium ratios and also varied pH values were prepared and used in the synthesis experiments. The X-ray measurements were performed with Philips PAILRED, Syntex P21 and Syntex R3 automatic diffractometers. All data sets were corrected for absorption. Five of the structures were solved with heavy-atom methods and one by direct methods. The structures were refined by computer-performed least-squares methods. The following crystals were obtained and structurally determined: NaV03•1.89H2O, which contains chains of VO5 trigonal bipyramids. Na4V2O7 (H2O)18 , containing discrete V2O74- anions which are completely surrounded by sodium-coordinated water molecules. Discrete molybdovanadate polyanions were found in the structures of the compounds Na6Mo6\/2O26 (H2O)16 , K7Mo8V5O40 • 8H2O, K8Mo4,V8O36 - 12H20 and K6 (V2 , Mo10) VO40 • 13H20. The last substance belongs to a class of compounds named 'heteropoly blues', which contain metal atoms in mixed-valence states, and has one unpaired electron on the polyanion. This compound was also investigated with electron spin resonance spectroscopy. The bonding configurations of oxygen atoms coordinated to molybdenum or vanadium are described and discussed. As the Mo4V8O368-, Mo8V5O407- (which is an isomer of the Keggin anion but has a quite different structure) and Mo6V2O266- anions all contain remnants of mononuclear molybdate and vanadate anions, it seems likely that these polyanions are formed mainly through the condensation of mononuclear species.An electrostatic model for the simulation of bond distances in polyions, starting with perfectly regular idealized models, is presented. / <p>Härtill 6 delar.</p> / digitalisering@umu
66

Improvement of single crystal-Si solar cell Efficiency by porous ITO/ITO double layer AR coating

Wu, Shih-Chieh 06 July 2011 (has links)
The purpose of the thesis is to investigate the improvement of single-crystal Si solar cell efficiency using porous Indium tin oxide (ITO)/ITO double layer antireflection(AR) coating. The resistivity, transmittance and refraction index of the porous ITO films prepared by supercritical CO2 treatment were investigated. At a 2000 psi pressure and 60¡CC, the resistivity of porous ITO films is 15 £[-cm, the average transmittance is better than 95 %, and the refraction index is 1.54. In addition, the resistivity of ITO thin films fabricated by reactive ratio-frequency magnetron sputtering is 7¡Ñ10-4 £[-cm, the average transmittance are 85 %, and the refraction index is 2.0. For the single crystal-Si solar cell with porous ITO/ITO double layer AR coating, the open circuit voltage, short circuit current, fill factor and efficiency are measured.
67

Research of single crystal growth and scintillation performance of Ce:(Lu(1-X)YX)2SiO5(Ce:LYSO) scintillator

Lee, Kai-Ping 04 August 2011 (has links)
Single crystals of cerium doped lutetium yttrium orthosilicate scintillator (Ce:(Lu(1-X)YX)2SiO5; Ce:LYSO) were grown through Czochralski method to investigate the affection of different growth conditions on the crystal growth. The relationship between thermal field and crystal growth was investigated. Different growth parameters and insulating system were adopted and compared to decrease the temperature gradient. It is found that the new insulating bricks can decrease effectively the temperature gradient and solve the crack problem of grown crystal. The relationship between materials ratio and the impurities in crystals. It is found that the optimized material ratio is Lu2O3:Y2O3:CeO2:SiO2=1.8563:0.1397:0.008:1.99. Under this ratio, we can get the crystals with best macroscopic optical quality. The scintillation properties of grown Ce:LYSO single crystal were measured. Through comparing the data with those in published literatures, it is found that the grown Ce:LYSO crystals present outstanding optical transmission, reaching the theoretical value about 84% in the visible light region. The transmission, UV-excitation and emission spectra are almost identical with the reported ones. The luminescence efficiency (LE) of random chosen 43 Ce:LYSO¡@samples were measured on the £^-ray multi-channel energy spectrum. It is found that the Ce:LYSO samples present stable luminescence efficiency with minimum channel number 3636.37, maximum channel number 4293.78, maximum deviation of 9.91% and standard deviation of 152.24 (3.77%). Annealing treatments were carried out in the air atmosphere on the small pieces of Ce:LYSO single crystals to eliminate the oxygen vacancies in the sample. It is found that the optimized annealing condition to improve the luminescence efficiency of Ce:LYSO is 1400 ¢J, 80 h under air atmosphere.
68

Study on the Growth and Optical Properties of Large-Sized Highly-Doped Nd:YAG Crystal by Czochralski Technique

Chen, Yingwei 07 August 2012 (has links)
¡@¡@This paper mainly focuses on the discussion about how to grow a large-sized highly-doped laser crystal- Neodymium yttrium aluminum garnet( {NdxY1-x}3Al5O3; Nd:YAG). The higher concentration of Nd:YAG crystal can allow the better efficiency of the laser. Since the ion size doped with Nd3+ ( R= 1.12A ) is larger than the ion size of Y3+ (R= 1.01A ), in the lattice of YAG, it¡¦s not easy to mix the smaller Y3+ site with the larger diameter of the Nd3 + ion. Therefore, the higher concentration of the laser crystal we want to grow, the more difficult work it is. ¡@¡@This experiment works under the use of the Czochralski technique to grow the laser crystal: Nd:YAG, and explore the impacts of different crystal pulling growth conditions on the growth of Nd:YAG crystal. Through adjusting the parameters of crystal growth, the crystal growth environments and the thermal fields, I discuss how to solve the problems of the scattering, cracking and spiral growing during the crystal growth process in order to improve the quality of the crystals. ¡@¡@Finally, comparing the results of a variety of spectral analysis (X-ray diffraction, UV / Vis Spectroscopy, Raman Spectroscopy, PL Spectroscopy) on the slice samples of Nd:YAG crystal which grew by our laboratory with the literature results, we can find that the X-ray diffraction pattern, the absorption spectroscopy, the Raman spectroscopy and the Photoluminescence spectroscopy of the Nd:YAG crystals grew in this experiment are consistent with the literature.
69

Acidic dissolution of apatite and laser ablation condensation of SnO2-NiO

Tseng, Wan-Ju 18 July 2006 (has links)
This thesis is about the kinetics of anisotropic acidic/hydrothermal dissolution of apatite bulk single crystal vs. nanorods, and the kinetic phase change of dense nanocondensates of SnO2 vs. Ni-dissolved SnO2 prepared by laser ablation condensation technique. In the first regard, directional dissolution of a natural (OH,F,Cl)-bearing apatite has been studied at various solution pH values (0~3) and 30 oC. This apatite showed abnormally high O-H stretching frequencies due to the substitution of Cl for OH. The advance of dissolution front indicated that steady-state directional dissolution for pH = 0-2 followed an apparent rate law of rate(mole / m2h)¡×kaH+n, where the rate constants (k) are 2.15 and 1.61; and the rate orders (n) are 1.44 and 1.30 for [0001] and <11 0> directions, respectively. Previous study, however, indicated a smaller n value (n = 0.55~0.70) for fluorapatite powders at higher pHs. A nonlinear pH dependence of logarithmic dissolution rate at a wide pH range implied that the surface active sites and/or rate-determining steps have changed when the acidity of solution and/or the composition of the apatite were changed. The opening of etch pits on basal planes further indicated that the dissolution rates along the three principal directions have the following relationship: [0001] > <11-20> > <10-10> for pH=0-1, but the order was reversed for pH > 3. As a comparison, static immersion of needle-like hydroxyapatite nanoparticles in neutral hydrothermal solution at 100oC caused preferential dissolution along the crystallographic c-axis to form nanorods with a lower aspect ratio. The anisotropic dissolution behavior is due to diffusion-controlled rapid dissolution at the sharp tip, and interface-controlled dissolution at side surfaces in terms of active sites. Extensive dissolution was accompanied with amorphization via explosive generation of dislocations, forming corrugated surface with both negative and positive curvature regions. The amorphous residue was significantly Ca and OH depleted when treated in the hydrothermal solution at pH=3. The BET specific surface area of the apatite nanoparticles remained 45¡Ó1 m2/g after immersion in neutral solution at 100oC for 36 h, but drastically decreased to 24.5 m2/g in acidic (pH =3) solution at 100oC for 8 h due to coalescence of the partially amorphized apatite powders. The specific surface area and average pore size also remained nearly unchanged for the dry pressed powders subject to firing at 100oC, but decreased and increased, respectively when sintered shortly at 600oC in air. BJH measurements at 77 K indicated the N2 adsorption/desorption hysteresis loops shift toward high relative pressure for sintered/hydrothermally etched powders indicating a higher activation energy of forming overlain liquid-like nitrogen layers. This can be attributed to a lower surface energy of the powders due to their shape change and/or partial amorphization. Alternatively, desorption through cavitation via the small voids could occur, in particular for such treated samples with characteristic bimodal pore size distribution. In the second subject, dense SnO2 with fluorite-type related structures were synthesized via very energetic Nd-YAG laser pulse irradiation of oxygen-purged Sn target. Combined effects of rapid heating to very high temperatures, nanophase effect, and dense surfaces account for the condensation of fluorite-type structure which transformed martensitically to baddeleyite-type accompanied with twinning, commensurate shearing and shape change. Alternatively Pa-3-modified fluorite-type hardly survived transformation to a-PbO2 type and rutile type in the dynamic process analogous to the case of static decompression. In addition, the rutile-type SnO2 nanocondensates have {110}, {100} and {101} facets, which are beneficial for {~hkl} vicinal attachment to form edge dislocations, faults and twinned bicrystals. The {011}-interface relaxation, by shearing along <011> directions, accounts for a rather high density of edge dislocations near the twin boundary thus formed. The rutile-type SnO2 could be alternatively transformed from orthorhombic CaCl2-type structure (denoted as o) following parallel crystallographic relationship, (0 1)r//(0 1)o; [111]r//[111]o, and full of commensurate superstructures and twins parallel to (011) of both phases. Furthermore, SnO2-NiO solid solution (ss) condensates were fabricated by laser ablation on Ni-Sn target at 1.1 J/pulse and oxygen flow of 50 L/min. AEM observations indicated that the particles were more or less coalesced/agglomerated as nano chain aggregate or in close packed manner. The Ni-rich condensates have rock salt structure with defect clusters not in paracrystalline distribution as would otherwise develop into the spinel phase. The Sn-rich condensates are predominantly rutile-type with minor baddeleyite-type, which are vulnerable to martensitic transformation/relaxation to form {101} incommensuare faults as well as epitaxial twin variants of rutile upon rapid cooling and/or electron irradiation. Islands of metallic Ni-Sn-NiSn were partially oxidized/solidified when deposited on silica glass.
70

Applications of the thermodynamics of elastic, crystalline materials

Si, Xiuhua 30 October 2006 (has links)
The thermodynamic behaviors of multicomponent, elastic, crystalline solids under stress and electro-magnetic fields are developed, including the extension of Euler’s equation, Gibbs equation, Gibbs-Duhem equation, the conditions to be expected at equilibrium, and an extension of the Gibbs phase rule. The predictions of this new phase rule are compared with experimental observations. The stress deformation behaviors of the single martensitic crystal with and without magnetic fields were studied with the stress deformation equation derived by Slattery and Si (2005). One coherent interfacial condition between two martensitic variants was developed and used as one boundary condition of the problem. The dynamic magnetic actuation process of the single crystal actuator was analyzed. The extension velocity and the actuation time of the single crystal actuator are predicted. The relationship between the external stress and the extension velocity and the actuation time with the presence of a large external magnetic field was studied. The extended Gibbs-Duhem equation and Slattery-Lagoudas stress-deformation expression for crystalline solids was used. Interfacial constraints on the elastic portion of stress for crystalline-crystalline interfaces and crystalline-fluids or crystallineamorphous solids interfaces were derived and tested by the oxidation on the exterior of a circular cylinder, one-sided and two-sided oxidation of a plate. An experiment for measuring solid-solid interface surface energies was designed and the silicon-silicon dioxide surface energy was estimated. A new generalized Clausius-Clapeyron equation has been derived for elastic crystalline solids as well as fluids and amorphous solids. Special cases are pertinent to coherent interfaces as well as the latent heat of transformation.

Page generated in 0.0734 seconds