• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Design of Resilient VLSI Circuits

Garg, Rajesh 2009 May 1900 (has links)
The reliable operation of Integrated Circuits (ICs) has become increasingly difficult to achieve in the deep sub-micron (DSM) era. With continuously decreasing device feature sizes, combined with lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations and radiation-induced soft errors. Among these noise sources, soft errors (or error caused by radiation particle strikes) have become an increasingly troublesome issue for memory arrays as well as combinational logic circuits. Also, in the DSM era, process variations are increasing at an alarming rate, making it more difficult to design reliable VLSI circuits. Hence, it is important to efficiently design robust VLSI circuits that are resilient to radiation particle strikes and process variations. The work presented in this dissertation presents several analysis and design techniques with the goal of realizing VLSI circuits which are tolerant to radiation particle strikes and process variations. This dissertation consists of two parts. The first part proposes four analysis and two design approaches to address radiation particle strikes. The analysis techniques for the radiation particle strikes include: an approach to analytically determine the pulse width and the pulse shape of a radiation induced voltage glitch in combinational circuits, a technique to model the dynamic stability of SRAMs, and a 3D device-level analysis of the radiation tolerance of voltage scaled circuits. Experimental results demonstrate that the proposed techniques for analyzing radiation particle strikes in combinational circuits and SRAMs are fast and accurate compared to SPICE. Therefore, these analysis approaches can be easily integrated in a VLSI design flow to analyze the radiation tolerance of such circuits, and harden them early in the design flow. From 3D device-level analysis of the radiation tolerance of voltage scaled circuits, several non-intuitive observations are made and correspondingly, a set of guidelines are proposed, which are important to consider to realize radiation hardened circuits. Two circuit level hardening approaches are also presented to harden combinational circuits against a radiation particle strike. These hardening approaches significantly improve the tolerance of combinational circuits against low and very high energy radiation particle strikes respectively, with modest area and delay overheads. The second part of this dissertation addresses process variations. A technique is developed to perform sensitizable statistical timing analysis of a circuit, and thereby improve the accuracy of timing analysis under process variations. Experimental results demonstrate that this technique is able to significantly reduce the pessimism due to two sources of inaccuracy which plague current statistical static timing analysis (SSTA) tools. Two design approaches are also proposed to improve the process variation tolerance of combinational circuits and voltage level shifters (which are used in circuits with multiple interacting power supply domains), respectively. The variation tolerant design approach for combinational circuits significantly improves the resilience of these circuits to random process variations, with a reduction in the worst case delay and low area penalty. The proposed voltage level shifter is faster, requires lower dynamic power and area, has lower leakage currents, and is more tolerant to process variations, compared to the best known previous approach. In summary, this dissertation presents several analysis and design techniques which significantly augment the existing work in the area of resilient VLSI circuit design.
2

Estudo de falhas transientes e técnicas de tolerância a falhas em conversores de dados do tipo SAR baseados em redistribuição de carga

Lanot, Alisson Jamie Cruz January 2014 (has links)
Conversores A/D do tipo aproximações sucessivas (SAR) baseados em redistribuição de carga são frequentemente utilizados em aplicações envolvendo a aquisição de sinais, principalmente as que exigem um baixo consumo de área e energia e boa velocidade de conversão. Esta topologia está presente em diversos dispositivos programáveis comerciais, como também em circuitos integrados de propósito geral. Tais dispositivos, quando expostos a ambientes suscetíveis a radiação, como é o caso de aplicações espaciais, estão sujeitos à colisão com partículas capazes de ionizar o silício. Estes podem causar falhas temporárias, como um efeito transiente, uma inversão de bit em um elemento de memória, ou até mesmo danos permanentes no circuito. Este trabalho visa descrever o comportamento do conversor SAR baseado em redistribuição de carga após a ocorrência de efeitos transientes causados por radiação, por meio de simulação SPICE. Tais efeitos podem causar falhas nos componentes da topologia: chaves, lógica de controle e comparador. Estes são propagados por todo o estágio de conversão, devido à sua característica sequencial de conversão. Por fim, uma discussão sobre as possíveis técnicas de mitigação de falhas para esta topologia é apresentada. / Successive Approximation Register (SAR) Analog to Digital Converters (ADCs) based on charge redistribution are frequently used in data acquisition systems, especially those requiring low power and low area, and good conversion speed. This topology is present on several mixed-signal programmable devices. These devices, when exposed to harsh environments, such as radiation, which is the case for space applications, are prone to Single Event Effects (SEEs). These effects may cause temporary failures, such as transient effects or memory upsets or even permanent failures on the circuit. This work presents the behavior of this type of converter after the occurrence of a transient fault on the circuit, by means of SPICE simulations. These transient faults may cause an inversion on the conversion due to a transient on the control logic of the switches, or a charge or discharge of the capacitors when a transient occur on the switches, as well as a failure on the comparator, which may propagate to the remainder stages of conversion, due to the sequential nature of the converter. A discussion about the possible fault mitigation techniques is also presented.
3

Techniques d'abstraction pour l'analyse et la mitigation des effets dus à la radiation / Abstraction techniques for scalable soft error analysis and mitigation

Evans, Adrian 19 June 2014 (has links)
Les effets dus à la radiation peuvent provoquer des pannes dans des circuits intégrés. Lorsqu'une particule subatomique, fait se déposer une charge dans les régions sensibles d'un transistor cela provoque une impulsion de courant. Cette impulsion peut alors engendrer l'inversion d'un bit ou se propager dans un réseau de logique combinatoire avant d'être échantillonnée par une bascule en aval.Selon l'état du circuit au moment de la frappe de la particule et selon l'application, cela provoquera une panne observable ou non. Parmi les événements induits par la radiation, seule une petite portion génère des pannes. Il est donc essentiel de déterminer cette fraction afin de prédire la fiabilité du système. En effet, les raisons pour lesquelles une perturbation pourrait être masquée sont multiples, et il est de plus parfois difficile de préciser ce qui constitue une erreur. A cela s'ajoute le fait que les circuits intégrés comportent des milliards de transistors. Comme souvent dans le contexte de la conception assisté par ordinateur, les approches hiérarchiques et les techniques d'abstraction permettent de trouver des solutions.Cette thèse propose donc plusieurs nouvelles techniques pour analyser les effets dus à la radiation. La première technique permet d'accélérer des simulations d'injections de fautes en détectant lorsqu'une faute a été supprimée du système, permettant ainsi d'arrêter la simulation. La deuxième technique permet de regrouper en ensembles les éléments d'un circuit ayant une fonction similaire. Ensuite, une analyse au niveau des ensemble peut être faite, identifiant ainsi ceux qui sont les plus critiques et qui nécessitent donc d'être durcis. Le temps de calcul est ainsi grandement réduit.La troisième technique permet d'analyser les effets des fautes transitoires dans les circuits combinatoires. Il est en effet possible de calculer à l'avance la sensibilité à des fautes transitoires de cellules ainsi que les effets de masquage dans des blocs fréquemment utilisés. Ces modèles peuvent alors être combinés afin d'analyser la sensibilité de grands circuits. La contribution finale de cette thèse consiste en la définition d'un nouveau langage de modélisation appelé RIIF (Reliability Information Ineterchange Format). Ce langage permet de décrire le taux des fautes dans des composants simples en fonction de leur environnement de fonctionnement. Ces composants simples peuvent ensuite être combinés permettant ainsi de modéliser la propagation de leur fautes vers des pannes au niveau système. En outre, l'utilisation d'un langage standard facilite l'échange de données de fiabilité entre les partenaires industriels.Au-delà des contributions principales, cette thèse aborde aussi des techniques permettant de protéger des mémoires associatives ternaires (TCAMs). Les approches classiques de protection (codes correcteurs) ne s'appliquent pas directement. Une des nouvelles techniques proposées consiste à utiliser une structure de données qui peut détecter, d'une manière statistique, quand le résultat n'est pas correct. La probabilité de détection peut être contrôlée par le nombre de bits alloués à cette structure. Une autre technique consiste à utiliser un détecteur de courant embarqué (BICS) afin de diriger un processus de fond directement vers le région touchée par une erreur. La contribution finale consiste en un algorithme qui permet de synthétiser de la logique combinatoire afin de protéger des circuits combinatoires contre les fautes transitoires.Dans leur ensemble, ces techniques facilitent l'analyse des erreurs provoquées par les effets dus à la radiation dans les circuits intégrés, en particulier pour les très grands circuits composés de blocs provenant de divers fournisseurs. Des techniques pour mieux sélectionner les bascules/flip-flops à durcir et des approches pour protéger des TCAMs ont étés étudiées. / The main objective of this thesis is to develop techniques that can beused to analyze and mitigate the effects of radiation-induced soft errors in industrialscale integrated circuits. To achieve this goal, several methods have been developedbased on analyzing the design at higher levels of abstraction. These techniquesaddress both sequential and combinatorial SER.Fault-injection simulations remain the primary method for analyzing the effectsof soft errors. In this thesis, techniques which significantly speed-up fault-injectionsimulations are presented. Soft errors in flip-flops are typically mitigated by selectivelyreplacing the most critical flip-flops with hardened implementations. Selectingan optimal set to harden is a compute intensive problem and the second contributionconsists of a clustering technique which significantly reduces the number offault-injections required to perform selective mitigation.In terrestrial applications, the effect of soft errors in combinatorial logic hasbeen fairly small. It is known that this effect is growing, yet there exist few techniqueswhich can quickly estimate the extent of combinatorial SER for an entireintegrated circuit. The third contribution of this thesis is a hierarchical approachto combinatorial soft error analysis.Systems-on-chip are often developed by re-using design-blocks that come frommultiple sources. In this context, there is a need to develop and exchange reliabilitymodels. The final contribution of this thesis consists of an application specificmodeling language called RIIF (Reliability Information Interchange Format). Thislanguage is able to model how faults at the gate-level propagate up to the block andchip-level. Work is underway to standardize the RIIF modeling language as well asto extend it beyond modeling of radiation-induced failures.In addition to the main axis of research, some tangential topics were studied incollaboration with other teams. One of these consisted in the development of a novelapproach for protecting ternary content addressable memories (TCAMs), a specialtype of memory important in networking applications. The second supplementalproject resulted in an algorithm for quickly generating approximate redundant logicwhich can protect combinatorial networks against permanent faults. Finally anapproach for reducing the detection time for errors in the configuration RAM forField-Programmable Gate-Arrays (FPGAs) was outlined.
4

Estudo de falhas transientes e técnicas de tolerância a falhas em conversores de dados do tipo SAR baseados em redistribuição de carga

Lanot, Alisson Jamie Cruz January 2014 (has links)
Conversores A/D do tipo aproximações sucessivas (SAR) baseados em redistribuição de carga são frequentemente utilizados em aplicações envolvendo a aquisição de sinais, principalmente as que exigem um baixo consumo de área e energia e boa velocidade de conversão. Esta topologia está presente em diversos dispositivos programáveis comerciais, como também em circuitos integrados de propósito geral. Tais dispositivos, quando expostos a ambientes suscetíveis a radiação, como é o caso de aplicações espaciais, estão sujeitos à colisão com partículas capazes de ionizar o silício. Estes podem causar falhas temporárias, como um efeito transiente, uma inversão de bit em um elemento de memória, ou até mesmo danos permanentes no circuito. Este trabalho visa descrever o comportamento do conversor SAR baseado em redistribuição de carga após a ocorrência de efeitos transientes causados por radiação, por meio de simulação SPICE. Tais efeitos podem causar falhas nos componentes da topologia: chaves, lógica de controle e comparador. Estes são propagados por todo o estágio de conversão, devido à sua característica sequencial de conversão. Por fim, uma discussão sobre as possíveis técnicas de mitigação de falhas para esta topologia é apresentada. / Successive Approximation Register (SAR) Analog to Digital Converters (ADCs) based on charge redistribution are frequently used in data acquisition systems, especially those requiring low power and low area, and good conversion speed. This topology is present on several mixed-signal programmable devices. These devices, when exposed to harsh environments, such as radiation, which is the case for space applications, are prone to Single Event Effects (SEEs). These effects may cause temporary failures, such as transient effects or memory upsets or even permanent failures on the circuit. This work presents the behavior of this type of converter after the occurrence of a transient fault on the circuit, by means of SPICE simulations. These transient faults may cause an inversion on the conversion due to a transient on the control logic of the switches, or a charge or discharge of the capacitors when a transient occur on the switches, as well as a failure on the comparator, which may propagate to the remainder stages of conversion, due to the sequential nature of the converter. A discussion about the possible fault mitigation techniques is also presented.
5

Estudo de falhas transientes e técnicas de tolerância a falhas em conversores de dados do tipo SAR baseados em redistribuição de carga

Lanot, Alisson Jamie Cruz January 2014 (has links)
Conversores A/D do tipo aproximações sucessivas (SAR) baseados em redistribuição de carga são frequentemente utilizados em aplicações envolvendo a aquisição de sinais, principalmente as que exigem um baixo consumo de área e energia e boa velocidade de conversão. Esta topologia está presente em diversos dispositivos programáveis comerciais, como também em circuitos integrados de propósito geral. Tais dispositivos, quando expostos a ambientes suscetíveis a radiação, como é o caso de aplicações espaciais, estão sujeitos à colisão com partículas capazes de ionizar o silício. Estes podem causar falhas temporárias, como um efeito transiente, uma inversão de bit em um elemento de memória, ou até mesmo danos permanentes no circuito. Este trabalho visa descrever o comportamento do conversor SAR baseado em redistribuição de carga após a ocorrência de efeitos transientes causados por radiação, por meio de simulação SPICE. Tais efeitos podem causar falhas nos componentes da topologia: chaves, lógica de controle e comparador. Estes são propagados por todo o estágio de conversão, devido à sua característica sequencial de conversão. Por fim, uma discussão sobre as possíveis técnicas de mitigação de falhas para esta topologia é apresentada. / Successive Approximation Register (SAR) Analog to Digital Converters (ADCs) based on charge redistribution are frequently used in data acquisition systems, especially those requiring low power and low area, and good conversion speed. This topology is present on several mixed-signal programmable devices. These devices, when exposed to harsh environments, such as radiation, which is the case for space applications, are prone to Single Event Effects (SEEs). These effects may cause temporary failures, such as transient effects or memory upsets or even permanent failures on the circuit. This work presents the behavior of this type of converter after the occurrence of a transient fault on the circuit, by means of SPICE simulations. These transient faults may cause an inversion on the conversion due to a transient on the control logic of the switches, or a charge or discharge of the capacitors when a transient occur on the switches, as well as a failure on the comparator, which may propagate to the remainder stages of conversion, due to the sequential nature of the converter. A discussion about the possible fault mitigation techniques is also presented.
6

EMERGING MEMORY-BASED DESIGNS AND RESILIENCY TO RADIATION EFFECTS IN ICS

Gnawali, Krishna Prasad 01 December 2020 (has links)
The performance of a modern computing system is improving with technology scaling due to advancements in the modern semiconductor industry. However, the power efficiency along with reliability does not scale linearly with performance efficiency. High leakage and standby power in sub 100 nm technology are critical challenges faced by circuit designers. Recent developments in device physics have shown that emerging non-volatile memories are very effective in reducing power dissipation because they eliminate stand by power and exhibit almost zero leakage powerThis dissertation studies the use of emerging non-volatile memory devices in designing circuit architecture for improving power dissipation and the performance of the computing system. More specically, it proposes a novel spintronic Ternary Content AddressableMemory (TCAM), a novel memristive TCAM with improved power and performance efficiency. Our experimental evaluation on 45 nm technology for a 256-bit word-size spintronic TCAM at a supply voltage of 1 V with a sense margin of 50 mV show that the delay is lessthan 200 ps and the per-bit search energy is approximately 3 fJ. The proposed spintronic TCAM consumes at least 30% less energy when compared to state-of-the-art TCAM designs. The search delay on a 144-bit proposed memristive TCAM at a supply voltage of 1 V and a sense margin of 140 mV is 175 ps with per bit search energy of 1.2 fJ on a 45 nm technology. It is 1.12 x times faster and dissipates 67% less search energy per bit than the fastest existing 144-bit MTCAM design.Emerging non-volatile memories are well known for their ability to perform fast analog multiplication and addition when they are arranged in crossbar fashion and are especially suited for neural network applications. However, such systems require the on-chip implementation of the backpropagation algorithm to accommodate process variations. This dissertation studies the impact of process variation in training memristive neural network architecture. It proposes a low hardware overhead on-chip implementation of the backpropagation algorithm that utilizes effectively the very dense memristive cross-bar arrayand is resilient to process variations.Another important issue that needs a careful study due to shrinking technology node is the impact of space or terrestrial radiation in Integrated Circuits (ICs) because the probability of a high energy particle causing an error increases with a decrease in thethreshold voltage and the noise margin. Moreover, single-event effects (SEEs) sensitivity depends on the set of input vectors used at the time of testing due to logical masking. This dissertation analyzes the impact of input test set on the cross section of the microprocessorand proposes a mechanism to derive a high-quality input test set using an automatic test pattern generation (ATPG) for radiation testing of microprocessors arithmetic and logical units..
7

Techniques pour l'évaluation et l'amélioration du comportement des technologies émergentes face aux fautes aléatoires / Techniques for the evaluation and the improvement of emergent technologies’ behavior facing random errors

Costenaro, Enrico 09 December 2015 (has links)
L'objectif principal de cette thèse est de développer des techniques d'analyse et mitigation capables à contrer les effets des Evènements Singuliers (Single Event Effects) - perturbations externes et internes produites par les particules radioactives, affectant la fiabilité et la sureté en fonctionnement des circuits microélectroniques complexes. Cette thèse à la vocation d'offrir des solutions et méthodologies industrielles pour les domaines d'applications terrestres exigeant une fiabilité ultime (télécommunications, dispositifs médicaux, ...) en complément des travaux précédents sur les Soft Errors, traditionnellement orientés vers les applications aérospatiales, nucléaires et militaires.Les travaux présentés utilisent une décomposition de sources d'erreurs dans les circuits actuels, visant à mettre en évidence les contributeurs les plus importants.Les upsets (SEU) - Evènements Singuliers (ES) dans les cellules logiques séquentielles représentent actuellement la cible principale pour les efforts d'analyse et d'amélioration à la fois dans l'industrie et dans l'académie. Cette thèse présente une méthodologie d'analyse basée sur la prise en compte de la sensibilité de chaque état logique d'une cellule (state-awareness), approche qui améliore considérablement la précision des résultats concernant les taux des évènements pour les instances séquentielles individuelles. En outre, le déséquilibre intrinsèque entre la susceptibilité des différents états des bascules est exploité pour mettre en œuvre une stratégie d'amélioration SER à très faible coût.Les fautes transitoires (SET) affectant la logique combinatoire sont beaucoup plus difficiles à modéliser, à simuler et à analyser que les SEUs. L'environnement radiatif peut provoquer une multitude d'impulsions transitoires dans les divers types de cellules qui sont utilisés en configurations multiples. Cette thèse présente une approche pratique pour l'analyse SET, applicable à des circuits industriels très complexes. Les principales étapes de ce processus consiste à: a) caractériser complètement la bibliothèque de cellules standard, b) évaluer les SET dans les réseaux logiques du circuit en utilisant des méthodes statiques et dynamiques et c) calculer le taux SET global en prenant en compte les particularités de l'implémentation du circuit et de son environnement.L'injection de fautes reste la principale méthode d'analyse pour étudier l'impact des fautes, erreurs et disfonctionnements causés par les évènements singuliers. Ce document présente les résultats d'une analyse fonctionnelle d'un processeur complexe dans la présence des fautes et pour une sélection d'applications (benchmarks) représentatifs. Des techniques d'accélération de la simulation (calculs probabilistes, clustering, simulations parallèles) ont été proposées et évalués afin d'élaborer un environnement de validation industriel, capable à prendre en compte des circuits très complexes. Les résultats obtenus ont permis l'élaboration et l'évaluation d'un hypothétique scénario de mitigation qui vise à améliorer sensiblement, et cela au moindre coût, la fiabilité du circuit sous test. Les résultats obtenus montrent que les taux d'erreur, SDC (Silent Data Corruption) et DUE (Detectable Uncorrectable Errors) peuvent être considérablement réduits par le durcissement d'un petite partie du circuit (protection sélective). D'autres techniques spécifiques ont été également déployées: mitigation du taux de soft-errors des Flip-Flips grâce à une optimisation du Temporal De-Rating par l'insertion sélective de retard sur l'entrée ou la sortie des bascules et biasing du circuit pour privilégier les états moins sensibles.Les méthodologies, algorithmes et outils CAO proposés et validés dans le cadre de ces travaux sont destinés à un usage industriel et ont été valorisés dans le cadre de plateforme CAO commerciale visant à offrir une solution complète pour l'évaluation de la fiabilité des circuits et systèmes électroniques complexes. / The main objective of this thesis is to develop analysis and mitigation techniques that can be used to face the effects of radiation-induced soft errors - external and internal disturbances produced by radioactive particles, affecting the reliability and safety in operation complex microelectronic circuits. This thesis aims to provide industrial solutions and methodologies for the areas of terrestrial applications requiring ultimate reliability (telecommunications, medical devices, ...) to complement previous work on Soft Errors traditionally oriented aerospace, nuclear and military applications.The work presented uses a decomposition of the error sources, inside the current circuits, to highlight the most important contributors.Single Event Effects in sequential logic cells represent the current target for analysis and improvement efforts in both industry and academia. This thesis presents a state-aware analysis methodology that improves the accuracy of Soft Error Rate data for individual sequential instances based on the circuit and application. Furthermore, the intrinsic imbalance between the SEU susceptibility of different flip-flop states is exploited to implement a low-cost SER improvement strategy.Single Event Transients affecting combinational logic are considerably more difficult to model, simulate and analyze than the closely-related Single Event Upsets. The working environment may cause a myriad of distinctive transient pulses in various cell types that are used in widely different configurations. This thesis presents practical approach to a possible exhaustive Single Event Transient evaluation flow in an industrial setting. The main steps of this process consists in: a) fully characterize the standard cell library using a process and library-aware SER tool, b) evaluate SET effects in the logic networks of the circuit using a variety dynamic (simulation-based) and static (probabilistic) methods and c) compute overall SET figures taking into account the particularities of the implementation of the circuit and its environment.Fault-injection remains the primary method for analyzing the effects of soft errors. This document presents the results of functional analysis of a complex CPU. Three representative benchmarks were considered for this analysis. Accelerated simulation techniques (probabilistic calculations, clustering, parallel simulations) have been proposed and evaluated in order to develop an industrial validation environment, able to take into account very complex circuits. The results obtained allowed the development and evaluation of a hypothetical mitigation scenario that aims to significantly improve the reliability of the circuit at the lowest cost.The results obtained show that the error rate, SDC (Silent Data Corruption) and DUE (Detectable Uncorrectable Errors) can be significantly reduced by hardening a small part of the circuit (Selective mitigation).In addition to the main axis of research, some tangential topics were studied in collaboration with other teams. One of these consisted in the study of a technique for the mitigation of flip-flop soft-errors through an optimization of the Temporal De-Rating (TDR) by selectively inserting delay on the input or output of flip-flops.The Methodologies, the algorithms and the CAD tools proposed and validated as part of the work are intended for industrial use and have been included in a commercial CAD framework that offers a complete solution for assessing the reliability of circuits and complex electronic systems.

Page generated in 0.0989 seconds