Spelling suggestions: "subject:"singleevent effects"" "subject:"complexevent effects""
1 |
Desenvolvimento de um sistema de medidas para estudos de efeitos de radiação em dispositivos eletrônicos: metodologias e estudos de casos / Development of a measurement system for research on radiation effects on electronic devices: metodologies and case studiesAguiar, Vitor Ângelo Paulino de 06 June 2019 (has links)
Efeitos causados pela interação da radiação ionizante em dispositivos eletrônicos consis- tem numa preocupação crescente em diversos segmentos, como as aplicações aeroespaci- ais e em física de altas energias. Entre os efeitos de radiação induzidos por íons pesados estão os chamados de Efeitos de Eventos Isolados (Single Event Effects - SEE), em que o impacto de um único íon pode ser capaz de gerar um efeito observável, através da elevada deposição de energia e consequente geração de pares elétron-lacuna. O estudo destes efeitos requer um acelerador de partículas capaz de prover feixes uniformes de íons pesados com baixo fluxo. Neste trabalho, desenvolvemos um sistema para produ- ção de feixes de íons pesados para estudar SEE no Acelerador Pelletron 8UD, utilizando as técnicas de desfocalização e espalhamento múltiplo em folhas de ouro. O sistema foi projetado para prover feixes com intensidades entre 10 2 e 10 5 partículas/s/cm 2 com uniformidade maior que 90% numa área circular de diâmetro de 1,5 cm, operando em regime de alto-vácuo. Um manipulador de amostras permite a movimentação do dispo- sitivo sob teste com precisão de 2,5 m e um sistema de aquisição de dados dedicado foi desenvolvido, permitindo a automação de medidas. O sistema foi caracterizado com feixes de 1 H, 12 C, 16 O, 19 F, 28 Si, 35 Cl e 63 Cu a várias energias, apresentando fluxo e uni- formidade adequados aos experimentos em diversas configurações de focalização e folhas espalhadoras, e tem sido utilizado por diversos grupos de pesquisa. O novo sistema foi utilizado para estudar o efeito das camadas de isolamento e metalização na coleta de carga e geração de eventos observáveis em um dispositivo analógico e em um disposi- tivo digital, de modo a estabelecer metodologias de trabalho adequadas para estudos precisos de mecanismos de ocorrência de efeitos de radiação. O dispositivo analógico estudado foi um transistor p-MOS, onde o sinal de corrente induzido pelo impacto de íons diversos foi analisado de modo a obter a seção de choque de eventos e a cargaix gerada, permitindo determinar a espessura da camada de metalização em 1,28(2) m, e a camada de coleta de carga dependente do LET e alcance da partícula incidente, variando entre 6,0 e 11,0 m. O dispositivo digital estudado foi uma memória SRAM 28nm, onde foi observada uma forte dependência da seção de choque de eventos com a penetração do feixe no dispositivo. Associando as camadas de metalização e isolamento a um meio efetivo de interação, obteve-se que toda a área sensível do dispositivo só pode ser excitada, isto é, nela ocorrerem eventos observáveis, para partículas com alcance, no meio efetivo, entre 14 e 20 m, embora partículas com alcance de até 10 m sejam capazes de sensibilizar até 50% da área ativa do dispositivo. / Effects on electronic devices caused by interactions of ionizing radiation are a main concern in several fields, such as aerospace applications and high-energy physics. Among the heavy-ion induced radiation effects are the Single Event Effects, in which a strike of a single ion can be enough to generate an observable effect, as a result of the high energy deposition and thus electron-hole pairs generation. The study of these effects requires the use of uniform, low-flux particle beams. In this work, we developed a system for production of heavy ion beams for SEE studies at Pelletron 8UD accelerator, through the defocusing and multiple scattering in gold foil techniques. The setup can provide ion beams with intensities ranging from 10 2 e 10 5 particles/s/cm 2 with uniformity better than 90% in an circular area of 1.5 cm diameter, operating under high-vacuum. A sample manipulador allows device under test positioning with a precision of 2.5 m, and a dedicated data acquisition system was developed, allowing measurement automation. The system was characterized with 1 H, 12 C, 16 O, 19 F, 28 Si, 35 Cl and 63 Cu ion beams at several energies, presenting flux and uniformity adequate for SEE studies in many different configurations, and it is being used by several research groups. The new facility was used to study the effect of isolation and metalization layers in charge collection and observable events generation in an analog and in a digital device, in order to establish proper metodologies for precise studies of radiation effects mecanisms. The analog device studied was a p-MOS transitor, from which the heavy-ion impact induced current signal was analised to obtain cross-section and colected charge, allowing to determine metalization layer thickness to be 1.28(2) m, and charge collection dependency on particle LET and range, varying from 6.0 to 11.0 m. The digital device studied was a 28nm SRAM memory, where a strong dependency of cross-section with particle range in the device was observed. Associating to the metal and insulating layers an effectivexi medium, it was observed that the complete sensitive area can be excited only by particle with ranges in effective medium between 14 and 20 m, although particles with ranges up to 10 m are capable of sensibilizing up to 50% of devices active area.
|
2 |
STUDY OF SINGLE-EVENT EFFECTS ON DIGITAL SYSTEMS2015 August 1900 (has links)
Microelectronic devices and systems have been extensively utilized in a variety of radiation
environments, ranging from the low-earth orbit to the ground level. A high-energy particle from
such an environment may cause voltage/current transients, thereby inducing Single Event Effect
(SEE) errors in an Integrated Circuit (IC). Ever since the first SEE error was reported in 1975,
this community has made tremendous progress in investigating the mechanisms of SEE and
exploring radiation tolerant techniques. However, as the IC technology advances, the existing
hardening techniques have been rendered less effective because of the reduced spacing and
charge sharing between devices. The Semiconductor Industry Association (SIA) roadmap has
identified radiation-induced soft errors as the major threat to the reliable operation of electronic
systems in the future. In digital systems, hardening techniques of their core components, such as
latches, logic, and clock network, need to be addressed.
Two single event tolerant latch designs taking advantage of feedback transistors are
presented and evaluated in both single event resilience and overhead. These feedback transistors
are turned OFF in the hold mode, thereby yielding a very large resistance. This, in turn, results in
a larger feedback delay and higher single event tolerance. On the other hand, these extra
transistors are turned ON when the cell is in the write mode. As a result, no significant write
delay is introduced. Both designs demonstrate higher upset threshold and lower cross-section
when compared to the reference cells.
Dynamic logic circuits have intrinsic single event issues in each stage of the operations. The
worst case occurs when the output is evaluated logic high, where the pull-up networks are turned
OFF. In this case, the circuit fails to recover the output by pulling the output up to the supply rail.
A capacitor added to the feedback path increases the node capacitance of the output and the
feedback delay, thereby increasing the single event critical charge. Another differential structure
that has two differential inputs and outputs eliminates single event upset issues at the expense of
an increased number of transistors.
Clock networks in advanced technology nodes may cause significant errors in an IC as the
devices are more sensitive to single event strikes. Clock mesh is a widely used clocking scheme
in a digital system. It was fabricated in a 28nm technology and evaluated through the use of
heavy ions and laser irradiation experiments. Superior resistance to radiation strikes was
demonstrated during these tests.
In addition to mitigating single event issues by using hardened designs, built-in current
sensors can be used to detect single event induced currents in the n-well and, if implemented,
subsequently execute fault correction actions. These sensors were simulated and fabricated in a
28nm CMOS process. Simulation, as well as, experimental results, substantiates the validity of
this sensor design. This manifests itself as an alternative to existing hardening techniques.
In conclusion, this work investigates single event effects in digital systems, especially those
in deep-submicron or advanced technology nodes. New hardened latch, dynamic logic, clock,
and current sensor designs have been presented and evaluated. Through the use of these designs,
the single event tolerance of a digital system can be achieved at the expense of varying overhead
in terms of area, power, and delay.
|
3 |
Využití moderních metod zvyšování spolehlivosti pro implementaci řídicího systému / Usage of Modern Methods for Increasing Reliability of Control System ImplementationsSzurman, Karel January 2012 (has links)
At avionics control and critical systems is necessary guarantee a minimal level of fault tolerance and their high reliability. On the electronic components in these devices has an undesirable influence environment conditions and mainly cosmic ray. In this paper are described the most common failure types of semiconductor components and devices together with modern methods which can be increased the system fault tolerance and its overall reliability. There are introduced aspects of the avionic systems design due to finally certification and ways to evaluate its safety. This thesis describes design and implementation of the CAN bus control system for the FPGA platform which uses the CANAerospace application protocol. Created system design is improved by the TMR architecture. Fault tolerance of both system version is tested by the SEU framework which allows using the dynamic partial reconfiguration generate an SEU failures into running FPGA design.
|
4 |
Development of Radiation Hardened High Voltage Super-Junction Power MOSFETJanuary 2020 (has links)
abstract: In recent years, the Silicon Super-Junction (SJ) power metal-oxide semiconductor field-effect transistor (MOSFET), has garnered significant interest from spacecraft designers. This is due to their high breakdown voltage and low specific on-state resistance characteristics. Most of the previous research work on power MOSFETS for space applications concentrated on improving the radiation tolerance of low to medium voltage (~ 300V) power MOSFETs. Therefore, understanding and improving the reliability of high voltage SJMOS for the harsh space radiation environment is an important endeavor.In this work, a 600V commercially available silicon planar gate SJMOS is used to study the SJ technology’s tolerance against total ionizing dose (TID) and destructive single event effects (SEE), such as, single event burnout (SEB) and single event gate rupture (SEGR). A technology computer aided design (TCAD) software tool is used to design the SJMOS and simulate its electrical characteristics.
Electrical characterization of SJMOS devices showed substantial decrease in threshold voltage and increase in leakage current due to TID. Therefore, as a solution to improve the TID tolerance, metal-nitride-oxide-semiconductor (MNOS) capacitors with different oxide/nitride thickness combinations were fabricated and irradiated using a Co-60 gamma-source. Electrical characterization showed all samples with oxide/nitride stack gate insulators exhibited significantly higher tolerance to irradiation when compared to metal-oxide-semiconductor capacitors.
Heavy ion testing of the SJMOS showed the device failed due to SEB and SEGR at 10% of maximum rated bias values. In this work, a 600V SJMOS structure is designed that is tolerant to both SEB and SEGR. In a SJMOS with planar gate, reducing the neck width improves the tolerance to SEGR but significantly changes the device electrical characteristics. The trench gate SJ device design is shown to overcome this problem. A buffer layer and larger P+-plug are added to the trench gate SJ power transistor to improve SEB tolerance. Using TCAD simulations, the proposed trench gate structure and the tested planar gate SJMOS are compared. The simulation results showed that the SEB and SEGR hardness in the proposed structure has improved by a factor of 10 and passes at the device’s maximum rated bias value with improved electrical performance. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
|
5 |
Use of Approximate Triple Modular Redundancy for Fault Tolerance in Digital CircuitsAlbandes, Iuri 26 November 2018 (has links)
La triple redundancia modular (TMR) es una técnica bien conocida de mitigación de fallos que proporciona una alta protección frente a fallos únicos pero con un gran coste en términos de área y consumo de potencia. Por esta razón, la redundancia parcial se suele aplicar para aligerar estos sobrecostes. En este contexto, la TMR aproximada (ATMR), que consisten en la implementación de la redundancia triple con versiones aproximadas del circuito a proteger, ha surgido en los últimos años como una alternativa a la replicación parcial, con la ventaja de obtener mejores soluciones de compromiso entre la cobertura a fallos y los sobrecostes. En la literatura ya han sido propuestas varias técnicas para la generación de circuitos aproximados, cada una con sus pros y sus contras. Este trabajo realiza un estudio de la técnica ATMR, evaluando el coste-beneficio entre el incremento de recursos (área) y la cobertura frente a fallos. La primera contribución es una nueva aproximación ATMR donde todos los módulos redundantes son versiones aproximadas del diseño original, permitiendo la generación de circuitos ATMR con un sobrecoste de área muy reducido, esta técnica se denomina Full-ATMR (ATMR completo o FATMR). El trabajo también presenta una segunda aproximación para implementar la ATMR de forma automática combinando una biblioteca de puertas aproximadas (ApxLib) y un algoritmo genético multi-objetivo (MOOGA). El algoritmo realiza una búsqueda ciega sobre el inmenso espacio de soluciones, optimizando conjuntamente la cobertura frente a fallos y el sobrecoste de área. Los experimentos comparando nuestra aproximación con las técnicas del estado del arte muestran una mejora de los trade-offs para diferentes circuitos de prueba (benchmark).
|
6 |
Selective software-implemented hardware fault tolerance tecnhiques to detect soft errors in processors with reduced overhead / Técnicas seletivas de tolerência a falhas em software com custo reduzido para detectar erros causados por falhas transientes em processadoresChielle, Eduardo January 2016 (has links)
A utilização de técnicas de tolerância a falhas em software é uma forma de baixo custo para proteger processadores contra soft errors. Contudo, elas causam aumento no tempo de execução e utilização de memória. Em consequência disso, o consumo de energia também aumenta. Sistemas que operam com restrição de tempo ou energia podem ficar impossibilitados de utilizar tais técnicas. Por esse motivo, este trabalho propoe técnicas de tolerância a falhas em software com custos no desempenho e memória reduzidos e cobertura de falhas similar a técnicas presentes na literatura. Como detecção é menos custoso que correção, este trabalho foca em técnicas de detecção. Primeiramente, um conjunto de técnicas de dados baseadas em regras de generalização, chamada VAR, é apresentada. As técnicas são baseadas nesse conjunto generalizado de regras para permitir uma investigação exaustiva, em termos de confiabilidade e custos, de diferentes variações de técnicas. As regras definem como a técnica duplica o código e insere verificadores. Cada técnica usa um diferente conjunto de regras. Então, uma técnica de controle, chamada SETA, é introduzida. Comparando SETA com uma técnica estado-da-arte, SETA é 11.0% mais rápida e ocupa 10.3% menos posições de memória. As técnicas de dados mais promissoras são combinadas com a técnica de controle com o objetivo de proteger tanto os dados quanto o fluxo de controle da aplicação alvo. Para reduzir ainda mais os custos, métodos para aplicar seletivamente as técnicas propostas foram desenvolvidos. Para técnica de dados, em vez de proteger todos os registradores, somente um conjunto de registradores selecionados é protegido. O conjunto é selecionado com base em uma métrica que analisa o código e classifica os registradores por sua criticalidade. Para técnicas de controle, há duas abordagens: (1) remover verificadores de blocos básicos, e (2) seletivamente proteger blocos básicos. As técnicas e suas versões seletivas são avaliadas em termos de tempo de execução, tamanho do código, cobertura de falhas, e o Mean Work to Failure (MWTF), o qual é uma métrica que mede o compromisso entre cobertura de falhas e tempo de execução. Resultados mostram redução dos custos sem diminuição da cobertura de falhas, e para uma pequena redução na cobertura de falhas foi possível significativamente reduzir os custos. Por fim, uma vez que a avaliação de todas as possíveis combinações utilizando métodos seletivos toma muito tempo, este trabalho utiliza um método para extrapolar os resultados obtidos por simulação com o objetivo de encontrar os melhores parâmetros para a proteção seletiva e combinada de técnicas de dados e de controle que melhorem o compromisso entre confiabilidade e custos. / Software-based fault tolerance techniques are a low-cost way to protect processors against soft errors. However, they introduce significant overheads to the execution time and code size, which consequently increases the energy consumption. System operation with time or energy restrictions may not be able to make use of these techniques. For this reason, this work proposes software-based fault tolerance techniques with lower overheads and similar fault coverage to state-of-the-art software techniques. Once detection is less costly than correction, the work focuses on software-based detection techniques. Firstly, a set of data-flow techniques called VAR is proposed. The techniques are based on general building rules to allow an exhaustive assessment, in terms of reliability and overheads, of different technique variations. The rules define how the technique duplicates the code and insert checkers. Each technique uses a different set of rules. Then, a control-flow technique called SETA (Software-only Error-detection Technique using Assertions) is introduced. Comparing SETA with a state-of-the-art technique, SETA is 11.0% faster and occupies 10.3% fewer memory positions. The most promising data-flow techniques are combined with the control-flow technique in order to protect both dataflow and control-flow of the target application. To go even further with the reduction of the overheads, methods to selective apply the proposed software techniques have been developed. For the data-flow techniques, instead of protecting all registers, only a set of selected registers is protected. The set is selected based on a metric that analyzes the code and rank the registers by their criticality. For the control-flow technique, two approaches are taken: (1) removing checkers from basic blocks: all the basic blocks are protected by SETA, but only selected basic blocks have checkers inserted, and (2) selectively protecting basic blocks: only a set of basic blocks is protected. The techniques and their selective versions are evaluated in terms of execution time, code size, fault coverage, and Mean Work To Failure (MWTF), which is a metric to measure the trade-off between fault coverage and execution time. Results show that was possible to reduce the overheads without affecting the fault coverage, and for a small reduction in the fault coverage it was possible to significantly reduce the overheads. Lastly, since the evaluation of all the possible combinations for selective hardening of every application takes too much time, this work uses a method to extrapolate the results obtained by simulation in order to find the parameters for the selective combination of data and control-flow techniques that are probably the best candidates to improve the trade-off between reliability and overheads.
|
7 |
Análise do uso de redundância em circuitos gerados por síntese de alto nível para FPGA programado por SRAM sob falhas transientesSantos, André Flores dos January 2017 (has links)
Este trabalho consiste no estudo e análise da suscetibilidade a efeitos da radiação em projetos de circuitos gerados por ferramenta de Síntese de Alto Nível para FPGAs (Field Programmable Gate Array), ou seja, circuitos programáveis e sistemas em chip, do inglês System-on-Chip (SOC). Através de um injetor de falhas por emulação usando o ICAP (Internal Configuration Access Port) localizado dentro do FPGA é possível injetar falhas simples ou acumuladas do tipo SEU (Single Event Upset), definidas como perturbações que podem afetar o funcionamento correto do dispositivo através da inversão de um bit por uma partícula carregada. SEU está dentro da classificação de SEEs (Single Event Effects), efeitos transitórios em tradução livre, podem ocorrer devido a penetração de partículas de alta energia do espaço e do sol (raios cósmicos e solares) na atmosfera da Terra que colidem com átomos de nitrogênio e oxigênio resultando na produção de partículas carregadas, na grande maioria nêutrons. Dentro deste contexto além de analisar a suscetibilidade de projetos gerados por ferramenta de Síntese de Alto Nível, torna-se relevante o estudo de técnicas de redundância como TMR (Triple Modular Redundance) para detecção, correção de erros e comparação com projetos desprotegidos verificando a confiabilidade. Os resultados mostram que no modo de injeção de falhas simples os projetos com redundância TMR demonstram ser efetivos. Na injeção de falhas acumuladas o projeto com múltiplos canais apresentou melhor confiabilidade do que o projeto desprotegido e com redundância de canal simples, tolerando um maior número de falhas antes de ter seu funcionamento comprometido. / This work consists of the study and analysis of the susceptibility to effects of radiation in circuits projects generated by High Level Synthesis tool for FPGAs Field Programmable Gate Array (FPGAs), that is, system-on-chip (SOC). Through an emulation fault injector using ICAP (Internal Configuration Access Port), located inside the FPGA, it is possible to inject single or accumulated failures of the type SEU (Single Event Upset), defined as disturbances that can affect the correct functioning of the device through the inversion of a bit by a charged particle. SEU is within the classification of SEEs (Single Event Effects), can occur due to the penetration of high energy particles from space and from the sun (cosmic and solar rays) in the Earth's atmosphere that collide with atoms of nitrogen and oxygen resulting in the production of charged particles, most of them neutrons. In this context, in addition to analyzing the susceptibility of projects generated by a High Level Synthesis tool, it becomes relevant to study redundancy techniques such as TMR (Triple Modular Redundancy) for detection, correction of errors and comparison with unprotected projects verifying the reliability. The results show that in the simple fault injection mode TMR redundant projects prove to be effective. In the case of accumulated fault injection, the multichannel design presented better reliability than the unprotected design and with single channel redundancy, tolerating a greater number of failures before its operation was compromised.
|
8 |
Modelamento do single-Event effiects em circuitos de memória FDSOI / Single event effects modeling in FDSOI memory circuitsBartra, Walter Enrique Calienes January 2016 (has links)
Este trabalho mostra a comparação dos efeitos das falhas provocadas pelos Single-Event Effects em dispositivos 28nm FDSOI, 28nm FDSOI High-K e 32nm Bulk CMOS e células de memória 6T SRAM feitas com estes dispositivos. Para conseguir isso, foram usadas ferramentas TCAD para simular falhas transientes devido a impacto de íons pesados a nível dispositivo e nível circuito. As simulações neste ambiente tem como vantagem a simulação dos fatos e mecanismos que produz as falhas transientes e seus efeitos nos dispositivos, além de também servir para projetar virtualmente estes dispositivos e caraterizar eles para estas simulações. Neste caso, foram projetados três dispositivos para simulação: um transistor NMOS de 32nm Bulk, um transistor NMOS de 28nm FDSOI e um transistor NMOS de 28nm FDSOI High-K para fazer comparações entre eles. Estes dispositivos foram projetados, caraterizados e testados contra o impacto de íons pesados a níveis dispositivo e circuito. Como resultado obtido, transistor Bulk de 32nm teve, no pior caso, uma carga coletada de 7.57 e 7.19 vezes maior que a carga coletada pelo dispositivo FDSOI de 28nm e FDSOI High-K de 28nm respectivamente atingido pelo mesmo íon pesado de 100MeV-cm2/mg. Com estes dados foi possível modelar o comportamento da carga coletada de ambos dispositivos usando este íon pesado, atingindo os terminais de Fonte e Dreno em distintos lugares e ângulos. Usando a mesma ferramenta e os dados obtidos de carga coletada pelos testes anteriores, foram projetadas células de memória SRAM de 6 transistores. Isso foi para testar elas contra os efeitos do impacto de íons pesados nos transistores NMOS de armazenagem da dados. Neste caso, a Transferência Linear de Energia (LET) do íon necessária para fazer que o dado armazenado na SRAM Bulk mude é 12.8 vezes maior que no caso da SRAM FDSOI e 10 maior no caso da SRAM FDSOI High-K, embora a quantidade de carga coletada necessária para que o dado mude em ambas células seja quase a mesma. Com estes dados foi possível modelar os efeitos dos íons pesados em ambos circuitos, descobrir a Carga Crítica destes e qual é o mínimo LET necessário para que o dado armazenado nestas SRAMs mude. / This work shows a comparison of faults due to Single-Event Effects in 28nm Fully Depleted SOI (FDSOI), 28nm FDSOI High-K and 32nm Bulk CMOS devices, and in 6T SRAM memory cells made with these devices. To provide this, was used TCAD tools to simulate transient faults due to heavy ion impacts on device and circuit levels. The simulations in that environment have the advantage to simulate the facts and mechanisms which produce the transient faults and this effects on the electronic devices, it also allow to simulate the virtual device fabrication and to characterize them. In this case, two devices were created for the simulations: a 32nm Bulk NMOS transistor and a 28nm FDSOI NMOS transistor for compare them. These devices were created, characterized and tested against heavy ion impacts at device and circuit levels. The results show that 32nm Bulk transistor has, in the worst case, a collected charge 7.57 and 7.19 times greater than the 28nm FDSOI and 28nm FDSOI High-K respectively collected charge with the same 100MeV-cm2/mg heavy ion. With these data it was possible to model the behavior of the collected charge in both devices with the same heavy-ion, reach the Source and Drain Terminal in different places and angles. Using the same tools and the obtained collected charge data of previous simulations, it was designed 6 transistors SRAM Memory Cells. That is done to test these circuits against the heavy ion effects on the data-storage NMOS transistor. In this case, the necessary Ion Linear Energy Transfer (LET) to flip the Bulk SRAM is 12.8 greater than the FDSOI SRAM and 10 times greater than the FDSOI High- K SRAM case, although the amount of charge to flip the cells is almost the same in both cases. With these data it was possible to model the heavy-ion effects in both circuits, discover the Critical Charge of them and the minimum LET to flips these SRAMs.
|
9 |
Etude de l' effet de l'énergie des ions lourds sur la sensibilité des composants électroniques / Study of the effect of heavy ion energy on the sensitivity of electronic devicesRaine, Mélanie 27 September 2011 (has links)
Ce mémoire de thèse traite de l’étude de la sensibilité des composants électroniques avancés en milieu radiatif. Le travail porte sur la modélisation détaillée du dépôt d’énergie induit par un ion lourd dans la matière, et sur l’influence de la prise en compte de cette trace d’ion dans les outils de simulation de la réponse de composants irradiés. Dans ce but, nous avons développé une chaîne de simulation, combinant différents codes de calcul à des échelles variées. Dans une première étape, le code d’interactions particule-matière Geant4 est ainsi utilisé pour modéliser la trace d’ion. Ces traces sont ensuite implémentées dans un code de simulation TCAD, afin d’étudier la réponse de transistors élémentaires à ces dépôts d’énergies détaillés. Cette étape est complétée par des mesures expérimentales. Enfin, l’étude est étendue au niveau circuit, en interfaçant les traces d’ions avec un outil de prédiction des SEE. Ces différentes étapes mettent en évidence la nécessité de prendre en compte la dimension radiale de la trace d’ion à tous les niveaux de simulation, pour modéliser de façon adéquate la réponse de composants avancés sous irradiation par des ions lourds. / This thesis studies the sensitivity of advanced electronic devices in radiative environments. The work deals with the detailed modeling of the deposited energy induced by heavy-ion in matter, and the influence of taking it into account in the tools simulating the response of irradiated devices. To do so, a simulation chain was developed, combining different calculation codes at various scales. In a first step, the particle-matter interaction code Geant4 is used to model the heavy ion track. These tracks are then implemented in a TCAD simulator, in order to study the response of elementary transistors to these detailed energy deposits. This step is completed with experimental measurements. Finally, the study is extended to the circuit level, by interfacing the heavy ion tracks with a SEE prediction tool. These different steps evidence the need for taking into account the radial extension of the ion track to all simulation levels, to adequately model the response of advanced devices under heavy ion irradiations.
|
10 |
Avaliação de conversores AD sob efeitos de radiação e mitigação utilizando redundância com diversidade / AD Converters under radiation effects evaluation and mitigation using design diversity redundancyAguilera, Carlos Julio González January 2018 (has links)
Este trabalho aborda um sistema de aquisição de dados (SAD) analógico-digital, baseado em um esquema redundante com diversidade de projeto, que é testado em dois ambientes diferentes de radiação. O primeiro experimento considera um teste de dose total ionizante (Total Ioninzig Dose - TID) sob irradiação gama, e o segundo experimento considera os efeitos de eventos singulares (Single Event Effects - SEE) sob irradiação por íons pesados. O SAD é composto, principalmente, por três conversores analógicos-digitais (ADCs) e dois votadores. A técnica usada é a Redundância Modular Tripla (Triple Modular Redundancy - TMR), com implementação em diferentes níveis de diversidade (temporal e arquitetural). O sistema é construído em um System-on-Chip programável (PSoC 5LP) da Cypress Semiconductor, fabricado em tecnologia CMOS de 130nm. Para a irradiação com TID, se utiliza o PSoC de part number CY8CKIT-050 sob uma fonte de radiação gama de 60Co (cobalto-60), com uma taxa de dose efetiva de 1 krad(Si)/h por 10 dias, atingindo uma dose total de 242 krad(Si) Para SEE se utiliza o protótipo PSoC de part number CY8CKIT-059 (sem encapsulamento) em um acelerador de partículas 8UD Pelletron usando 16O (oxigeno-16) ao vácuo, com energia de 36 MeV em um LET aproximado de 5.5 MeV/mg/cm2 e uma penetração no silício de 25 mm, resultando em um fluxo de 354 p/cm2.s, e uma fluência de 5077915 p/cm2 depois de 14755 segundos (4h 09min). Observou-se com o resultado do primeiro estudo que um (1) dos módulos do sistema apresentou uma degradação significativa na sua linearidade durante a irradiação, enquanto os outros tiveram uma degradação menos grave, mantendo assim a funcionalidade e confiabilidade do sistema. Durante o tempo de irradiação do segundo estudo, foram observadas 139 falhas: 53 SEFIs (Single Events Funtional Interrupt), 29 falhas críticas e 57 falhas SDC (Silent Data Corruption), atingindo as diferentes copias do sistema e um dos votadores do mesmo, mas sempre mantendo a saída esperada. Nos dois experimentos se evidencia a vantagem de usar a diversidade de projeto, além do TMR, para melhorar a resiliência e confiabilidade em sistemas críticos redundantes que trabalham com sinais mistos. / This work presents an analog-to-digital data acquisition system (DAS) based on a redundant scheme with design diversity, being tested in two different radiation environments. The first experiment is a Total Ionizing Dose (TID) essay and the second one considers Single Event Effects (SEE) under heavy ion irradiation. The DAS is mainly composed of three analog-todigital converters (ADCs) and two voters. The used technique was the Triple Modular Redundancy (TMR) implementing different levels of diversity (temporal and architectural). The circuit was built in a programmable System-on-Chip (PSoC 5LP) from Cypress Semiconductor, fabricated in a 130nm CMOS technology process. For the irradiation with TID the part number CY8CKIT-050 PSoC was used under a 60Co (cobalt-60) gamma radiation source, with an effective dose rate of 1 krad(Si)/h during 10 days, reaching a total dose of 242 krad(Si). For SEE experiments the part number CY8CKIT-059 (without encapsulation) PSoC prototype under a 8UD Pelletron particle accelerator using 16O (oxigen-16) under vacuum, with an energy of 36 MeV, resulting in a flux of 354p/cm2.s and a fluence of 5077915p/cm2 after 14755 seconds (4h 09min). As result of the first study it was observed that one of the system’s modules presented a significant degradation in its linearity during the irradiation, while degradations in the other modules were not as deep, maintaining the system’s functionality and reliability. During the period of the radiation of the second study, 139 faults were observed, 82 of them were critical and 57 were SDC (Silent Data Corruption), reaching the different system copies and one of the voters, while always maintaining the correct output. The advantage of using diversity, besides TMR, to improve resilience and reliability in redundant systems working with mixed signals was demonstrated in both experiments.
|
Page generated in 0.1794 seconds