• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 12
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Disturbance-Rejection Problem for a 2-D Airfoil Exhibiting Flutter

Bail, Thomas R. 21 April 1997 (has links)
Flutter suppression is a problem of considerable interest in modern avionics. Flutter is a vibration caused by energy in the airstream being absorbed by a non-rigid wing. Active control is one possible method of suppressing flutter. However, due to unmeasurable aerodynamic-lag states, developing an active control using full-state feedback is not viable. The use of a state-estimator is a more practical way of developing active controllers. In this paper we investigate two control methods using state-estimators. We also use simple models of disturbances to test attenuation and robustness of each control method. Finally, a method of quantitative robust analysis is reviewed and then applied to each of the controlled systems. / Master of Science
2

Aspects of Toeplitz operators and matrices : asymptotics, norms, singular values / Hermann Rabe

Rabe, Hermann January 2015 (has links)
The research contained in this thesis can be divided into two related, but distinct parts. The rst chapter deals with block Toeplitz operators de ned by rational matrix function symbols on discrete sequence spaces. Here we study sequences of operators that converge to the inverses of these Toeplitz operators via an invertibility result involving a special representation of the symbol of these block Toeplitz operators. The second part focuses on a special class of matrices generated by banded Toeplitz matrices, i.e., Toeplitz matrices with a nite amount of non-zero diagonals. The spectral theory of banded Toeplitz matrices is well developed, and applied to solve questions regarding the behaviour of the singular values of Toeplitz-generated matrices. In particular, we use the behaviour of the singular values to deduce bounds for the growth of the norm of the inverse of Toeplitz-generated matrices. In chapter 2, we use a special state-space representation of a rational matrix function on the unit circle to de ne a block Toeplitz operator on a discrete sequence space. A discrete Riccati equation can be associated with this representation which can be used to prove an invertibility theorem for these Toeplitz operators. Explicit formulas for the inverse of the Toeplitz operators are also derived that we use to de ne a sequence of operators that converge in norm to the inverse of the Toeplitz operator. The rate of this convergence, as well as that of a related Riccati di erence equation is also studied. We conclude with an algorithm for the inversion of the nite sections of block Toeplitz operators. Chapter 3 contains the main research contribution of this thesis. Here we derive sharp growth rates for the norms of the inverses of Toeplitz-generated matrices. These results are achieved by employing powerful theory related to the Avram-Parter theorem that describes the distribution of the singular values of banded Toeplitz matrices. The investigation is then extended to include the behaviour of the extreme and general singular values of Toeplitz-generated matrices. We conclude with Chapter 4, which sets out to answer a very speci c question regarding the singular vectors of a particular subclass of Toeplitz-generated matrices. The entries of each singular vector seems to be a permutation (up to sign) of the same set of real numbers. To arrive at an explanation for this phenomenon, explicit formulas are derived for the singular values of the banded Toeplitz matrices that serve as generators for the matrices in question. Some abstract algebra is also employed together with some results from the previous chapter to describe the permutation phenomenon. Explicit formulas are also shown to exist for the inverses of these particular Toeplitz-generated matrices as well as algorithms to calculate the norms and norms of the inverses. Finally, some additional results are compiled in an appendix. / PhD (Mathematics), North-West University, Potchefstroom Campus, 2015
3

Aspects of Toeplitz operators and matrices : asymptotics, norms, singular values / Hermann Rabe

Rabe, Hermann January 2015 (has links)
The research contained in this thesis can be divided into two related, but distinct parts. The rst chapter deals with block Toeplitz operators de ned by rational matrix function symbols on discrete sequence spaces. Here we study sequences of operators that converge to the inverses of these Toeplitz operators via an invertibility result involving a special representation of the symbol of these block Toeplitz operators. The second part focuses on a special class of matrices generated by banded Toeplitz matrices, i.e., Toeplitz matrices with a nite amount of non-zero diagonals. The spectral theory of banded Toeplitz matrices is well developed, and applied to solve questions regarding the behaviour of the singular values of Toeplitz-generated matrices. In particular, we use the behaviour of the singular values to deduce bounds for the growth of the norm of the inverse of Toeplitz-generated matrices. In chapter 2, we use a special state-space representation of a rational matrix function on the unit circle to de ne a block Toeplitz operator on a discrete sequence space. A discrete Riccati equation can be associated with this representation which can be used to prove an invertibility theorem for these Toeplitz operators. Explicit formulas for the inverse of the Toeplitz operators are also derived that we use to de ne a sequence of operators that converge in norm to the inverse of the Toeplitz operator. The rate of this convergence, as well as that of a related Riccati di erence equation is also studied. We conclude with an algorithm for the inversion of the nite sections of block Toeplitz operators. Chapter 3 contains the main research contribution of this thesis. Here we derive sharp growth rates for the norms of the inverses of Toeplitz-generated matrices. These results are achieved by employing powerful theory related to the Avram-Parter theorem that describes the distribution of the singular values of banded Toeplitz matrices. The investigation is then extended to include the behaviour of the extreme and general singular values of Toeplitz-generated matrices. We conclude with Chapter 4, which sets out to answer a very speci c question regarding the singular vectors of a particular subclass of Toeplitz-generated matrices. The entries of each singular vector seems to be a permutation (up to sign) of the same set of real numbers. To arrive at an explanation for this phenomenon, explicit formulas are derived for the singular values of the banded Toeplitz matrices that serve as generators for the matrices in question. Some abstract algebra is also employed together with some results from the previous chapter to describe the permutation phenomenon. Explicit formulas are also shown to exist for the inverses of these particular Toeplitz-generated matrices as well as algorithms to calculate the norms and norms of the inverses. Finally, some additional results are compiled in an appendix. / PhD (Mathematics), North-West University, Potchefstroom Campus, 2015
4

The Singular Values of the Exponientiated Adjacency Matrixes of Broom-Tree Graphs

Powell, Tracy 01 May 2006 (has links)
In this paper, we explore the singular values of adjacency matrices {An} for a particular family {Gn} of graphs, known as broom trees. The singular values of a matrix M are defined to be the square roots of the eigenvalues of the symmetrized matrix MTM. The matrices we are interested in are the symmetrized adjacency matrices AnTAn and the symmetrized exponentiated adjacency matrices BnTBn = (eAn − I)T(eAn − I) of the graphs Gn. The application of these matrices in the HITS algorithm for Internet searches suggests that we study whether the largest two eigenvalues of AnTAn (or those of BnTBn) can become close or in fact coincide. We have shown that for one family of broom-trees, the ratio of the two largest eigenvalues of BnTBn as the number n of nodes (more specifically, the length l of the graph) goes to infinity is bounded below one. This bound shows that for these graphs, the second largest eigenvalue remains bounded away from the largest eigenvalue. For a second family of broom trees it is not known whether the same is true. However, we have shown that for that family a certain later eigenvalue remains bounded away from the largest eigenvalue. Our last result is a generalization of this latter result.
5

Efficient Analysis for Nonlinear Effects and Power Handling Capability in High Power HTSC Thin Film Microwave Circuits

Tang, Hongzhen January 2000 (has links)
In this study two nonlinear analysis methods are proposed for investigation of nonlinear effects of high temperature superconductive(HTSC) thin film planar microwave circuits. The MoM-HB combination method is based on the combination formulation of the moment method(MoM) and the harmonic balance(HB) technique. It consists of linear and nonlinear solvers. The power series method treats the voltages at higher order frequencies as the excitations at the corresponding frequencies, and the higher order current distributions are then obtained by using the moment method again. The power series method is simple and fast for finding the output power at higher order frequencies. The MoM-HB combination method is suitable for strong nonlinearity, and it can be also used to find the fundamental current redistribution, conductor loss, and the scattering parameters variation at the fundamental frequency. These two proposed methods are efficient, accurate, and suitable for distributed-type HTSC nonlinearity. They can be easily incorporated into commercial EM CAD softwares to expand their capabilities. These two nonlinear analysis method are validated by analyzing a HTSC stripline filter and HTSC antenna dipole circuits. HTSC microstrip lines are then investigated for the nonlinear effects of HTSC material on the current density distribution over the cross section and the conductor loss as a function of the applied power. The HTSC microstrip patch filters are then studied to show that the HTSCinterconnecting line could dominate the behaviors of the circuits at high power. The variation of the transmission and reflection coefficients with the applied power and the third output power are calculated. The HTSC microstrip line structure with gilded edges is proposed for improving the power handling capability of HTSC thin film circuit based on a specified limit of harmonic generation and conductor loss. A general analysis approach suitable for any thickness of gilding layer is developed by integrating the multi-port network theory into aforementioned proposed nonlinear analysis methods. The conductor loss and harmonic generation of the gilded HTSC microstrip line are investigated.
6

Variational Spectral Analysis

Sendov, Hristo January 2000 (has links)
We present results on smooth and nonsmooth variational properties of {it symmetric} functions of the eigenvalues of a real symmetric matrix argument, as well as {it absolutely symmetric} functions of the singular values of a real rectangular matrix. Such results underpin the theory of optimization problems involving such functions. We answer the question of when a symmetric function of the eigenvalues allows a quadratic expansion around a matrix, and then the stronger question of when it is twice differentiable. We develop simple formulae for the most important nonsmooth subdifferentials of functions depending on the singular values of a real rectangular matrix argument and give several examples. The analysis of the above two classes of functions may be generalized in various larger abstract frameworks. In particular, we investigate how functions depending on the eigenvalues or the singular values of a matrix argument may be viewed as the composition of symmetric functions with the roots of {it hyperbolic polynomials}. We extend the relationship between hyperbolic polynomials and {it self-concordant barriers} (an extremely important class of functions in contemporary interior point methods for convex optimization) by exhibiting a new class of self-concordant barriers obtainable from hyperbolic polynomials.
7

Efficient Analysis for Nonlinear Effects and Power Handling Capability in High Power HTSC Thin Film Microwave Circuits

Tang, Hongzhen January 2000 (has links)
In this study two nonlinear analysis methods are proposed for investigation of nonlinear effects of high temperature superconductive(HTSC) thin film planar microwave circuits. The MoM-HB combination method is based on the combination formulation of the moment method(MoM) and the harmonic balance(HB) technique. It consists of linear and nonlinear solvers. The power series method treats the voltages at higher order frequencies as the excitations at the corresponding frequencies, and the higher order current distributions are then obtained by using the moment method again. The power series method is simple and fast for finding the output power at higher order frequencies. The MoM-HB combination method is suitable for strong nonlinearity, and it can be also used to find the fundamental current redistribution, conductor loss, and the scattering parameters variation at the fundamental frequency. These two proposed methods are efficient, accurate, and suitable for distributed-type HTSC nonlinearity. They can be easily incorporated into commercial EM CAD softwares to expand their capabilities. These two nonlinear analysis method are validated by analyzing a HTSC stripline filter and HTSC antenna dipole circuits. HTSC microstrip lines are then investigated for the nonlinear effects of HTSC material on the current density distribution over the cross section and the conductor loss as a function of the applied power. The HTSC microstrip patch filters are then studied to show that the HTSCinterconnecting line could dominate the behaviors of the circuits at high power. The variation of the transmission and reflection coefficients with the applied power and the third output power are calculated. The HTSC microstrip line structure with gilded edges is proposed for improving the power handling capability of HTSC thin film circuit based on a specified limit of harmonic generation and conductor loss. A general analysis approach suitable for any thickness of gilding layer is developed by integrating the multi-port network theory into aforementioned proposed nonlinear analysis methods. The conductor loss and harmonic generation of the gilded HTSC microstrip line are investigated.
8

Variational Spectral Analysis

Sendov, Hristo January 2000 (has links)
We present results on smooth and nonsmooth variational properties of {it symmetric} functions of the eigenvalues of a real symmetric matrix argument, as well as {it absolutely symmetric} functions of the singular values of a real rectangular matrix. Such results underpin the theory of optimization problems involving such functions. We answer the question of when a symmetric function of the eigenvalues allows a quadratic expansion around a matrix, and then the stronger question of when it is twice differentiable. We develop simple formulae for the most important nonsmooth subdifferentials of functions depending on the singular values of a real rectangular matrix argument and give several examples. The analysis of the above two classes of functions may be generalized in various larger abstract frameworks. In particular, we investigate how functions depending on the eigenvalues or the singular values of a matrix argument may be viewed as the composition of symmetric functions with the roots of {it hyperbolic polynomials}. We extend the relationship between hyperbolic polynomials and {it self-concordant barriers} (an extremely important class of functions in contemporary interior point methods for convex optimization) by exhibiting a new class of self-concordant barriers obtainable from hyperbolic polynomials.
9

Estimates for the condition numbers of large semi-definite Toeplitz matrices

Böttcher, A., Grudsky, S. M. 30 October 1998 (has links) (PDF)
This paper is devoted to asymptotic estimates for the condition numbers $\kappa(T_n(a))=||T_n(a)|| ||T_n^(-1)(a)||$ of large $n\cross n$ Toeplitz matrices $T_N(a)$ in the case where $\alpha \element L^\infinity$ and $Re \alpha \ge 0$ . We describe several classes of symbols $\alpha$ for which $\kappa(T_n(a))$ increases like $(log n)^\alpha, n^\alpha$ , or even $e^(\alpha n)$ . The consequences of the results for singular values, eigenvalues, and the finite section method are discussed. We also consider Wiener-Hopf integral operators and multidimensional Toeplitz operators.
10

Convolution type operators on cones and asymptotic spectral theory

Mascarenhas, Helena 28 January 2004 (has links) (PDF)
Die Arbeit beschäftigt sich mit Faltungsoperatoren auf Kegeln, die in Lebesgueräumen L^p(R^2) (1<p<\infty) von Funktionen auf der Ebene wirken. Es werden asymptotische Spektraleigenschaften der zugehörigen Finite Sections studiert. Im Falle p=2 (Hilbertraum) wird das Invertierbarkeitsproblem von Operatoren vom Faltungstyp auf Kegeln mit Hilfe der Methode der Standard-Modell-Algebren untersucht.

Page generated in 0.0825 seconds