Spelling suggestions: "subject:"site specific recombination"" "subject:"lite specific recombination""
1 |
Structure-Function Studies of Bacteriophage P2 Integrase and Cox proteinEriksson, Jesper January 2005 (has links)
<p>Probably no group of organisms has been as important as bacteriophages when it comes to the understanding of fundamental biological processes like transcriptional control, DNA replication, site-specific recombination, e.t.c.</p><p>The work presented in this thesis is a contribution towards the complete understanding of these organisms. Two proteins, integrase, and Cox, which are important for the choice of the life mode of bacteriophage P2, are investigated. P2 is a temperate phage, i.e. it can either insert its DNA into the host chromosome (by site-specific recombination) and wait (lysogeny), or it can produce new progeny with the help of the host protein machinery and thereafter lyse the cell (lytic cycle). The integrase protein is necessary for the integration and excision of the phage genome. The Cox protein is involved as a directional factor in the site-specific recombination, where it stimulates excision and inhibits integration. It has been shown that the Cox protein also is important for the choice of the lytic cycle. The choice of life mode is regulated on a transcriptional level, where two mutually exclusive promoters direct whether the lytic cycle (Pe) or lysogeny (Pc) is chosen. The Cox pro-tein has been shown to repress the Pc promoter and thereby making tran-scription from the Pe promoter possible, leading to the lytic cycle. Further, the Cox protein can function as a transcriptional activator on the parasite phage, P4. P4 has gained the ability to adopt the P2 protein machinery to its own purposes.</p><p>In this work the importance of the native size for biologically active integrase and Cox proteins has been determined. Further, structure-function analyses of the two proteins have been performed with focus on the protein-protein interfaces. In addition it is shown that P2 Cox and the P2 relative Wphi Cox changes the DNA topology upon specific binding. From the obtained results a mechanism for P2 Cox-DNA interaction is discussed.</p><p>The results from this thesis can be used in the development of a gene delivery system based on the P2 site-specific recombination system.</p>
|
2 |
Structure-Function Studies of Bacteriophage P2 Integrase and Cox proteinEriksson, Jesper January 2005 (has links)
Probably no group of organisms has been as important as bacteriophages when it comes to the understanding of fundamental biological processes like transcriptional control, DNA replication, site-specific recombination, e.t.c. The work presented in this thesis is a contribution towards the complete understanding of these organisms. Two proteins, integrase, and Cox, which are important for the choice of the life mode of bacteriophage P2, are investigated. P2 is a temperate phage, i.e. it can either insert its DNA into the host chromosome (by site-specific recombination) and wait (lysogeny), or it can produce new progeny with the help of the host protein machinery and thereafter lyse the cell (lytic cycle). The integrase protein is necessary for the integration and excision of the phage genome. The Cox protein is involved as a directional factor in the site-specific recombination, where it stimulates excision and inhibits integration. It has been shown that the Cox protein also is important for the choice of the lytic cycle. The choice of life mode is regulated on a transcriptional level, where two mutually exclusive promoters direct whether the lytic cycle (Pe) or lysogeny (Pc) is chosen. The Cox pro-tein has been shown to repress the Pc promoter and thereby making tran-scription from the Pe promoter possible, leading to the lytic cycle. Further, the Cox protein can function as a transcriptional activator on the parasite phage, P4. P4 has gained the ability to adopt the P2 protein machinery to its own purposes. In this work the importance of the native size for biologically active integrase and Cox proteins has been determined. Further, structure-function analyses of the two proteins have been performed with focus on the protein-protein interfaces. In addition it is shown that P2 Cox and the P2 relative Wphi Cox changes the DNA topology upon specific binding. From the obtained results a mechanism for P2 Cox-DNA interaction is discussed. The results from this thesis can be used in the development of a gene delivery system based on the P2 site-specific recombination system.
|
3 |
Site-specific recombination of P2-like phages; possible tools for safe gene therapy : A focus on phage ΦD145Mandali, Sridhar January 2010 (has links)
P2-like bacteriophages integrate their genome into the E. coli host cell by a site-specific recombination event upon lysogenization. The integrative recombination occurs between a specific sequence in the phage genome, attP, and a specific sequence in the host genome, attB, generating the host-phage junctions attL and attR. The integration is mediated by the phage enzyme integrase (Int) and the host factor IHF. The excisive recombination takes place between attL and attR, and is mediated by Int, IHF and phage encoded protein Cox. For safe integration of foreign genes into eukaryotic chromosome a recombinases is necessary which can perform the integration site-specifically. P2-like phage integrases have the potential to become tools for safe gene therapy. Their target is simple but specific, and once integration has occurred it is very stable in the absence of the Cox protein. The site-specific recombination mechanism has to be understood at the molecular level. Therefore, I have initiated the characterization of the site-specific recombination system of the P2-like phage ΦD145. In this work, Int and IHF are shown to bind to the different attachment sites cooperatively. One of two possible inverted repeats in attP is shown to be the Int core recognition site. The attP core of this phage has high identity with a site on human chromosome, denoted as ΨattB. In this study we have shown that in in vivo recombination ΦD145 Int can accept ΨattB in both bacteria and in eukaryotic cells. Also shown that Int consists of an intrinsic nuclear localization signal. A study also reveled that ΦD145 Int activity was affected by the Tyr-phosphorylation. Attempts have been made to change the specificity of the other P2-like phage P2 and WΦ integrases and also structural and functional analysis was done. A study on comparative analysis of Cox proteins and Cox binding sites gave us the basic information about the recombination mechanism. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.
|
4 |
Mechanisms and DNA Specificity in Site-specific Recombination of Integron CassettesJohansson, Carolina January 2007 (has links)
<p>Bacterial resistance to antibiotics has become a serious problem. This is due to the remarkable ability of bacteria to respond and rapidly adapt to environmental changes. Integrons are elements with the capacity for gene capture by an integron-encoded site-specific recombinase called IntI. IntI binds and acts at the recombination sites, <i>attI </i>and<i> attC</i> resulting in excision and integration of short DNA elements called gene cassettes carrying an <i>attC</i> site in the 3’ end. Several families of antibiotic resistance genes are borne on gene cassettes in integrons connected to mobile elements. Other cassettes reside in the larger and ancestral superintegrons located on chromosomes in both pathogenic and environmental bacteria. Due to their close connection with lateral gene transfer systems, it is possible that integrons are functionally dependent on those networks. This work presents arguments for such connections. The<i> attC</i> of the <i>aadA1-qacE</i> cassette junction in Tn<i>21</i> was characterized in detail. Like other <i>attC</i> sites, it contains two pairs of inverted repeats and is almost palindromic. By using electrophoretic mobility shift assays, this study showed that IntI1 binds only to the bottom strand of <i>attC</i>. Upon folding the strand into a hairpin, a few chiral hairpin distortions define both the strand choice and also the appropriate orientation of the highly symmetrical site. Structural recognition also explains the wide sequence variation among <i>attC</i> sites. We have documented the initial cleavage step in recombination in IntI extracts and integrase levels in extracts were evaluated by a new method. Mutagenesis and homology modelling were performed to find amino acid residues in IntI1 that are important for recognition of <i>attC</i> hairpin-DNA. Comparisons were made with other tyrosine family members to explain how integron integrases differ in site-recognition and also in their mechanism of strand exchange.</p>
|
5 |
Mechanisms and DNA Specificity in Site-specific Recombination of Integron CassettesJohansson, Carolina January 2007 (has links)
Bacterial resistance to antibiotics has become a serious problem. This is due to the remarkable ability of bacteria to respond and rapidly adapt to environmental changes. Integrons are elements with the capacity for gene capture by an integron-encoded site-specific recombinase called IntI. IntI binds and acts at the recombination sites, attI and attC resulting in excision and integration of short DNA elements called gene cassettes carrying an attC site in the 3’ end. Several families of antibiotic resistance genes are borne on gene cassettes in integrons connected to mobile elements. Other cassettes reside in the larger and ancestral superintegrons located on chromosomes in both pathogenic and environmental bacteria. Due to their close connection with lateral gene transfer systems, it is possible that integrons are functionally dependent on those networks. This work presents arguments for such connections. The attC of the aadA1-qacE cassette junction in Tn21 was characterized in detail. Like other attC sites, it contains two pairs of inverted repeats and is almost palindromic. By using electrophoretic mobility shift assays, this study showed that IntI1 binds only to the bottom strand of attC. Upon folding the strand into a hairpin, a few chiral hairpin distortions define both the strand choice and also the appropriate orientation of the highly symmetrical site. Structural recognition also explains the wide sequence variation among attC sites. We have documented the initial cleavage step in recombination in IntI extracts and integrase levels in extracts were evaluated by a new method. Mutagenesis and homology modelling were performed to find amino acid residues in IntI1 that are important for recognition of attC hairpin-DNA. Comparisons were made with other tyrosine family members to explain how integron integrases differ in site-recognition and also in their mechanism of strand exchange.
|
6 |
Ligand-Controlled Site-Specific Recombination in ZebrafishBrand, Michael, Chekuru, Avinash, Kuscha, Veronika, Hans, Stefan 17 September 2019 (has links)
Cre-mediated site-specific recombination has emerged as an indispensable tool for the precise manipulation of genomes allowing lineage-tracing studies, temporal and spatial misexpressions, and in particular the generation of conditional knockout alleles. Previously, we and others showed that Cre and its ligand-inducible variant CreERT2 are also highly efficient in the developing and adult zebrafish. The number of Cre driver and effector lines is currently still limited in zebrafish. However, the recent advent of novel genome editing tools such as TALEN and CRISPR/Cas will significantly increase interest in the conditional Cre/lox-technology in this organism. The considerations of basic transgene design and subsequent transgenesis have been addressed elsewhere. Here we outline practical experimental steps for transient functionality tests of CreERT2 driver and effector constructs. In addition, we introduce detailed protocols to elicit CreERT2-mediated recombination in vivo at embryonic as well as adult stages.
|
7 |
Système de recombinaison Xer chez Staphylococcus aureusGustinelli, Alexandra 08 1900 (has links)
Le système de recombinaison Xer est impliqué dans la monomerisation des réplicons bactériens, comme les plasmides et les chromosomes, dans une grande variété de bactéries. Ce système est un système de recombinaison site-spécifique composé de deux tyrosine recombinases, soit XerC et XerD. Ils agissent ensemble afin de convertir les chromosomes dimériques en monomères en agissant à un site spécifique près du terminus de la réplication, appelé le site dif. Les gènes Xer et leur site d’action sont identifiés dans plusieurs bactéries gram positives et gram négatives.
Staphylococcus aureus représente une bactérie gram positive qui contient un système XerCD/dif. Elle est impliqué dans plusieurs maladies humaines, tels que des infections
cutanées, des gastroentérites, et le syndrome de choc toxique, pour en nommer quelques unes. Bien que les gènes codant les protéines XerC et XerD ont été identifiés, il y a beaucoup d’inconnu sur leur mode d’action au site dif. Des mutations dans XerC ont été obtenues, mais aucune dans XerD, suggérant que ce gène pourrait être essentiel pour cet organisme. Les études présentées dans ce mémoire ont permis de commencer à mieux caractériser XerD de S. aureus, en séquençant le gène et en faisant des tests de liaison à l’ADN. Elles ont montré que la recombinase XerD se lie au site dif d’Eschericia coli seul et de façon coopérative avec la recombinase XerC d’E. coli. XerD de S. aureus est, aussi, efficace dans la complémentation de XerD muté d’E. coli dans la réaction de recombinaison chromosomique. Cependant, elle ne démontre pas cette même capacité de complémentation lors de la recombinaison
plasmidique aux sites cer. / The Xer recombination system is involved in the monomerisation of bacterial replicons, such as plasmids and chromosomes, in a wide variety of bacteria. This system is a site-specific recombination system comprised of two tyrosine recombinases, XerC and XerD, which act in concert to convert dimeric chromosomes to monomers by acting at a specific site near the terminus of replication called the dif site. Xer genes and their site of action have been identified in many gram positive and gram negative bacteria. Staphylococcus aureus represents a gram positive bacterium containing a XerCD/dif system. It is a bacteria implicated in many human diseases, such as skin infections, gastroenteritis and toxic shock syndrome, to name a few. Although the genes encoding the XerC and XerD proteins have been identified, not much is known about their mode of action on the dif site. Mutations in xerC have been obtained, but none in xerD, suggesting that this gene may be essential for this organism. The work presented in this paper has allowed us to better understand the
XerD protein of S. aureus, not only in the sequencing of the xerD gene but also in the
performing of DNA binding assays. It has been shown that XerD binds to the dif site of E. coli, not only alone but also in cooperativity with E. coli XerC. S. aureus XerD is also capable of complementing the mutated XerD protein in E. coli when it comes to chromosomal recombination. However, it does not demonstrate this same ability to
complement XerD regarding recombination at the plasmidic cer sites.
|
8 |
Le système de recombinaison site-spécifique dif/Xer de Campylobacter jejuniRezoug, Zoulikha 12 1900 (has links)
Chez les bactéries à chromosome circulaire, la réplication peut engendrer des dimères que le système de recombinaison site-spécifique dif/Xer résout en monomères afin que la ségrégation des chromosomes fils et la division cellulaire se fassent normalement. Ses composants sont une ou deux tyrosines recombinases de type Xer qui agissent à un site de recombinaison spécifique, dif, avec l’aide de la translocase FtsK qui mobilise l’ADN au septum avant la recombinaison. Ce système a été d’abord identifié et largement caractérisé chez Escherichia coli mais il a également été caractérisé chez de nombreuses bactéries à Gram négatif et positif avec des variantes telles que les systèmes à une seule recombinase comme difSL/XerS chez Streptococcus sp et Lactococcus sp. Des études bio-informatiques ont suggéré l’existence d’autres systèmes à une seule recombinase chez un sous-groupe d’ε-protéobactéries pathogènes, dont Campylobacter jejuni et Helicobacter pylori. Les acteurs de ce nouveau système sont XerH et difH. Dans ce mémoire, les premières recherches in vitro sur ce système sont présentées. La caractérisation de la recombinase XerH de C. jejuni a été entamée à l’aide du séquençage de son gène et de tests de liaison et de clivage de l’ADN. Ces études ont montré que XerH pouvait se lier au site difSL de S. suis de manière non-coopérative : que XerH peut se lier à des demi-sites de difSL mais qu’elle ne pouvait, dans les conditions de l’étude effectuer de clivage sur difSL. Des recherches in silico ont aussi permis de faire des prédictions sur FtsK de C. jejuni. / DNA replication can form dimers in bacteria harboring a circular chromosome. The dif/Xer recombination system resolves monomers them so that chromosome segregation and cell division take place normally. This system is composed of one or two tyrosine recombinases that act at a specific recombination site, dif, with the help of the FtsK translocase that mobilises DNA to the septum before recombination. The Xer system has been first identified and widely characterized in Escherichia coli where XerC and XerD are the recombinases. The system has been found and studied in many other Gram negative and positive bacteria. A different form, carrying a single recombinase acting on an atypical site, has been identified in Streptococci and Lactococci, difSL/XerS. In silico studies suggested the existence of other single recombinase systems in a sub-group of pathogenic ε-proteobacteriasuch as Campylobacter jejuni and Helicobacter pylori. The components of this system were identified as XerH and difH. In this thesis, the first in vitro studies made on this system are presented. The characterization of the XerH recombinase of C. jejuni started with the sequencing of its gene and with the DNA binding and cleavage assays. These studies showed that XerH could bind difSL of S. suis non-cooperatively, that it could bind difSL half-sites and that it was unable to perform cleavage on difSL. Also, in silico comparisons permitted predictions on FtsK of C. jejuni.
|
9 |
Les systèmes Xer à une seule recombinaseLeroux, Maxime 11 1900 (has links)
Les dimères chromosomiques se produisant lors de la réparation de chromosomes circulaires peuvent être dommageables pour les bactéries en bloquant la ségrégation des chromosomes et le bon déroulement de la division cellulaire. Pour remédier à ce problème, les bactéries utilisent le système Xer de monomérisation des chromosomes. Celui-ci est composé de deux tyrosine recombinases, XerC et XerD, qui vont agir au niveau du site dif et procéder à une recombinaison qui aura pour effet de séparer les deux copies de l’ADN. Le site dif est une séquence d’ADN où deux répétitions inversées imparfaites séparées par six paires de bases permettent la liaison de chacune des recombinases. Cette recombinaison est régulée à l’aide de FtsK, une protéine essentielle de l’appareil de division. Ce système a été étudié en profondeur chez Escherichia coli et a aussi été caractérisée dans une multitude d’espèces variées, par exemple Bacillus subtilis. Mais dans certaines espèces du groupe des Streptococcus, des études ont été en mesure d’identifier une seule recombinase, XerS, agissant au niveau d’un site atypique nommée difSL. Peu de temps après, un second système utilisant une seule recombinase a été identifié chez un groupe des epsilon-protéobactéries. La recombinase fut nommée XerH et le site de recombinaison, plus similaire à difSL qu’au site dif classique, difH. Dans cette thèse, des résultats d’expériences in vitro sur les deux systèmes sont présentés, ainsi que certains résultats in vivo. Il est démontré que XerS est en mesure de se lier de façon coopérative à difSL et que cette liaison est asymétrique, puisque XerS est capable de se lier à la moitié gauche du site prise individuellement mais non à la moitié droite. Le clivage par XerS est aussi asymétrique, étant plus efficace au niveau du brin inférieur. Pour ce qui est de XerH, la liaison à difH est beaucoup moins coopérative et n’a pas la même asymétrie. Par contre, le clivage est asymétrique lui aussi. La comparaison de ces deux systèmes montrent qu’ils ne sont pas homologues et que les systèmes Xer à seule recombinase existent sous plusieurs versions. Ces résultats représentent la première découverte d’un espaceur de 11 paires de bases chez les tyrosine recombinases ainsi que la première étude in vitro sur XerH. / The chromosome dimers produced during the repair of circular chromosomes can be harmful to bacteria by blocking the segregation of the chromosome and cell division. To overcome this problem, bacteria use the Xer system for the monomerisation of chromosome dimers. It has two components, XerC and XerD, which act on the dif site and complete a recombination that will lead to the separation of the two copies of the DNA. The dif site is a DNA sequence where two imperfect inverted repeats separated by six base pairs allow the binding of each recombinase. This recombination is regulated by the protein FtsK, an essential member of the cell division machinery. The Xer system has been well studied in Escherichia coli and has also been characterized in a variety of species, for example Bacillus subtilis. Furthermore, in certain species of Streptococcus, studies have identified only a single recombinase, XerS, which acts on an atypical site named difSL in order to monomerize dimeric chromosomes. Not long after, a second system using a single recombinase was identified in a group of epsilon-proteobacteria. This recombinase was named XerH and the recombination site, difH, was found to more similar to difSL than to the classical dif sites. In this thesis, results from in vitro experiments on both systems are presented, as well as some results from in vivo experiments. We show that XerS is capable of binding cooperatively to difSL and that this binding is asymmetrical. This is because XerS is able to bind to the left half of the site but not to the right half when they are separated. The cleavage by XerS is also asymmetrical, as it is more efficient on the bottom strand. As for XerH, its binding to difH is much less cooperative and doesn’t have the same asymmetry. But the cleavage is also asymmetrical like the one seen in XerS. Comparing the two systems show that they are not homologuous and that more than one version of Xer systems using a single recombinase exists. These results represent the first discovery of an 11 bases pairs spacer for tyrosine recombinase. It is also the first in vitro studies of XerH.
|
10 |
Development of Methods for Protein Delivery and the Directed Evolution of RecombinasesThompson, David Brandon 01 January 2015 (has links)
As a class, protein-based therapeutics offer tremendous advantages over traditional small molecule drugs. Due to their sizes and folding energies, proteins are ideal for catalyzing chemical reactions, and can bind tightly and selectively to extended target surfaces. However, due to their large size, virtually all proteins are unable to spontaneously enter cells, and as a result protein therapeutics are restricted to extracellular targets. We developed a platform for delivery of proteins to intracellular target sites by engineering the surface chemistry of a model protein, green fluorescent protein (GFP). We found that 'supercharged' cationic GFP variants (scGFPs) bind to anionic cell surface molecules and initiate endocytosis, resulting in the efficient delivery of translationally fused cargo to intracellular targets. We discovered that scGFPs, and cationic delivery reagents in general, alter endosomal trafficking in a manner proportional to both their charge and their delivery efficiency, suggesting that avoidance of endosomal maturation is a key step in the endosomal escape of delivered protein cargos. We also developed a method for encapsulation of recombinant proteins by cationic lipid delivery reagents using negatively supercharged GFP.
Genetic modification technologies have matured rapidly following the discovery of protein classes with programmable DNA-binding specificities. While site-directed genetic knockout technologies are highly effective, targeted integration and repair remain comparatively inefficient. Site-specific recombinases directly catalyze strand exchange and ligation between DNA molecules, offering an approach to efficient genomic integration. However, most site-specific recombinases are not easily reprogrammable. To address this problem, we developed a genetic selection technique based on the Phage-Assisted Continuous Evolution (PACE) system, to enable the rapid evolution of recombinase proteins towards targets of interest. Using Cre recombinase as a model, the PACE system was optimized, validated, and used to evolve Cre variants with higher activity on their native loxP target site, as well as altered specificity towards a human genomic sequence within the hROSA26 locus.
Finally, we developed a method for enhancing the specificity of RNA-guided nucleases by restricting activity to sites of obligate dimeric nuclease assembly. We engineered a FokI nuclease fusion to a catalytically inactivated Cas9 protein that mediates efficient modification with significantly reduced off-target activity.
|
Page generated in 0.1301 seconds