• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 52
  • 52
  • 27
  • 19
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterizing low-sulfide instrumented waste-rock piles: image grain-size analysis and wind-induced gas transport

Chi, Xiaotong January 2010 (has links)
This study is part of the Diavik Waste-Rock Pile Project taking place at the Diavik Diamond Mine in the Northwest Territories, Canada. The project involves the construction of three 15m-scale low sulfide test waste-rock piles and monitoring of fluid flow, geochemical reactions, heat and gas transport within the waste-rock piles and characterization of the physical properties of the waste-rock piles. The focus of this thesis is characterizing grain-size distribution of the waste-rock and quantifying gas transport in the test waste-rock piles. Grain size of waste rock ranges from millimeters to meters. Sieve analysis typically only provides information of grain size <0.1 m at a single location. A computer program was developed using digital image-processing techniques to obtain a spatial grain-size distribution from photographs of tip faces of the test waste-rock piles acquired in the field. The program characterizes grain size >0.1 m and employs a region-growing algorithm for segmentation of waste-rock grains with pre- and post-processing techniques to improve the accuracy of segmentation. The program was applied to photographs of six different tip faces of the test waste-rock piles. For grain size <0.1 m, data from sieve analyses were attached to the grain-size curves generated from image grain-size analyses to obtain a full spectrum grain-size analyses ranging from boulders to fines. The results show that fine fractions are retained at the top of the tip faces and grain size increases non-linearly from top to bottom of a waste-rock pile. Calculations show that although the greatest mass is associated with the medium and coarse fractions, the greatest surface area is associated with the fine fractions. The results are consistent with field observation that the initial solute concentrations are greatest at the top of the pile and saturated hydraulic conductivity are lower at the top of the pile than in the pile interior. Statistical moments show that the test waste-rock piles have mean grain size of granules and are very poorly sorted, coarse skewed and leptokurtic. Permeability is calculated using empirical formulae and good agreement is obtained between calculated values and field measurements. The heterogeneity of grain size obtained from this study can provide a basis for future modeling efforts. Gas transport analysis focused on 1) substantiating the relationship between wind flow external to the waste-rock pile and gas pressures within the pile, 2) determining the gas flow regime in the pile, and 3) quantifying the temporal variation in wind speed and direction and determining the relevant time scales. Differential gas pressures were measured in 2008 at 49 locations within one of the three test waste-rock piles and 14 locations on the surface of the pile at one-minute intervals. Wind speed and direction were measured at 10-min intervals. Correlations between wind vectors and pressure measurements show that the wind influences pressure fluctuations in the test pile. The strength of the correlation is roughly inversely proportional to the distance between measurement ports and the atmospheric boundary. The linear relationship between internal pressure measurements and surface pressure measurements demonstrate that gas flow is Darcian within the test waste-rock pile. Spectral analysis of wind data and a one-dimensional analytical solution to the flow equations show that the persistence of wind in a certain direction has most pronounced effects on transient gas flow within the pile. The penetration depth of wind-induced gas pressure wave is a function of the periodicity of the wind and permeability of the waste-rock pile.
12

A Geomorphological Assessment of Armored Deposits Along the Southern Flanks of Grand Mesa, CO, USA

Brunk, Timothy J. 2010 May 1900 (has links)
A series of deposits, located along the southern flanks of Grand Mesa, Colorado, and extending to the south, are problematic, and the processes related to emplacement are not understood. The overall area is dominated by two landform systems, Grand Mesa, which supported a Pleistocene ice cap, and the North Fork Gunnison River drainage. Thus, one has to ask: Are these deposits the result of the melting of the ice cap or are they fluvial terraces associated with the evolution of the ancestral Gunnison River? The goal of this research was to map the areal extent of the deposits and to interpret the formation and climatic significance in understanding the evolution of the Pleistocene landscape in the region. An extensive exposure, parallel to State Highway 65 near Cory Grade, was used for detailed description and sampling. Three additional exposures, ~10 to 20 km (~6 to 12 mi) were used to extend the areal extent of sampling. The study area was mapped using aerial photography and traditional field mapping aided by GPS. From the field work, a detailed stratigraphic column, including lithology and erodability, was constructed. Vertical exposures of the deposits were described, mapped, and recorded in the field and using detailed photo mosaics. Samples were collected from each stratum of the deposits for grain-size, shape, and sorting analyses. Five distinct depositional facies were identified. Sieve analysis on collected samples shows that four distinct grain-sizes occur in the outcrops; coarse sand, very-coarse sand, granule, and pebble and boulder. Mean grain-sizes range from 0.0722 to 0.9617, -0.0948 to -0.9456, -1.0566 to -1.9053, and -2.0050 to -3.4643, respectively. Glacio-fluvial depositional environments were identified and supported with observations of sedimentary structures and clast composition. Two major environments of deposition are recorded in the deposits; fluvial deposits from glacial outburst floods, and debris flow deposits. Imbrication of clasts in the strata suggests the flow came from the direction of Grand Mesa to the north. Facies and subsequent sequences were constructed to portray evidence that supports the glacio-fluvial mode of deposition.
13

Research of Neural Network Applied on Seabed Sediment Recognition

Lee, Po-Yi 07 June 2000 (has links)
Along with advancement of human industrialization, pollution in the ocean is getting worse. Moreover, the overfishing through the years has caused catastrophic damage to the ocean eco-system. In order to avoid exhaustion of fishery resource, many concepts of planned administrative fishery has become popular, and thereamong, ocean ranch draws the most attention. Artificial reef plays a key role in an ocean ranch, which starts with incubating brood fish in the laboratory. Often, the brood fish will grow in the cage near coast till proper size, then be released to the artificial reef. If fish groups do not disperse and multiply, the artificial reef can be considered successful. The success of the artificial reef relies on the stable foundation. Consequently, the composition of seabed sediment under the planned site should be investigated thoroughly before hand. This research introduced a remote investigation method, which an active sonar, depth sounder, was used to emit and collect acoustic signals. By using the signals reflected from the seabed, the sediment composition can be analyzed. However, all acoustic signals are subjected to noise through propagation, and distorted somehow. Therefore, certain signal pre-processing should be applied to the received signal, and representative characteristics can be extracted from it. In this research, the recognition platform was built on artificial neural network (ANN) in this research. Among many network algorithm modes, this research chose the widely used backpropagation learning algorithm to be the main structure in ANN. The goal of this research was to discriminate among three seabed sediments: fine sand, medium sand, and rock. During the signal processing, characteristics were extracted by using peak value selection method. Selected major frequency peaks were fed into the network to train and learn. According to partial error relation between recognition and practical result, weights of the network were adjusted for improving successful ratio. Finally, a reliable acoustic wave signal recognition system was constructed.
14

Socio-natural landscapes in the Palmarejo Valley, Honduras

Hawken, James R. 13 April 2007 (has links)
Communities have traditionally been viewed as spatially bounded social units composed of multiple households whose inhabitants are integrated by shared resources and a common sense of identity. While investigating resources and identity is useful for archaeological study because of their material correlates, such views of community ultimately fail to acknowledge the dynamic interaction between cultural and environmental forces in shaping and shifting those arrangements over time. This study examines settlement, excavation, and geoarchaeological data from the Palmarejo Valley in northwestern Honduras with the aim of modeling the process of community formation at the intersection of social and natural landscapes in both the past and present.
15

Provenance and Depositional History of Late Pleistocene New Jersey Shelf Sediments

Turner, Roxie Jessica 12 May 2005 (has links)
Pleistocene New Jersey shelf sedimentology is strongly influenced by glacially driven sea level changes. A combination of regressive shoreline processes, subaerial exposure, fluvial downcutting, and deposition and reworking during transgression has influenced the NJ shelf sediment composition. Sediment provenance and transport history may be determined on a shelf environment through analysis of grain size distribution, heavy mineral content, magnetic mineral concentrations, and isotopic dating methods. A combination of surface grab and stratigraphic samples were analyzed within the study area. Relatively high percentages of heavy minerals were found in the 2 phi and 3 phi size fractions and hornblende grains provided K-Ar age values indicating two groups of sediment sources. The first source is Grenville with apparent ages above 900 Ma deposited during marine OIS 1. The second source is a mixed assemblage of Grenvillian and Paleozoic sources deposited during marine OIS 3, with apparent ages of approximately 850 ± 20 Ma.
16

Characterizing low-sulfide instrumented waste-rock piles: image grain-size analysis and wind-induced gas transport

Chi, Xiaotong January 2010 (has links)
This study is part of the Diavik Waste-Rock Pile Project taking place at the Diavik Diamond Mine in the Northwest Territories, Canada. The project involves the construction of three 15m-scale low sulfide test waste-rock piles and monitoring of fluid flow, geochemical reactions, heat and gas transport within the waste-rock piles and characterization of the physical properties of the waste-rock piles. The focus of this thesis is characterizing grain-size distribution of the waste-rock and quantifying gas transport in the test waste-rock piles. Grain size of waste rock ranges from millimeters to meters. Sieve analysis typically only provides information of grain size <0.1 m at a single location. A computer program was developed using digital image-processing techniques to obtain a spatial grain-size distribution from photographs of tip faces of the test waste-rock piles acquired in the field. The program characterizes grain size >0.1 m and employs a region-growing algorithm for segmentation of waste-rock grains with pre- and post-processing techniques to improve the accuracy of segmentation. The program was applied to photographs of six different tip faces of the test waste-rock piles. For grain size <0.1 m, data from sieve analyses were attached to the grain-size curves generated from image grain-size analyses to obtain a full spectrum grain-size analyses ranging from boulders to fines. The results show that fine fractions are retained at the top of the tip faces and grain size increases non-linearly from top to bottom of a waste-rock pile. Calculations show that although the greatest mass is associated with the medium and coarse fractions, the greatest surface area is associated with the fine fractions. The results are consistent with field observation that the initial solute concentrations are greatest at the top of the pile and saturated hydraulic conductivity are lower at the top of the pile than in the pile interior. Statistical moments show that the test waste-rock piles have mean grain size of granules and are very poorly sorted, coarse skewed and leptokurtic. Permeability is calculated using empirical formulae and good agreement is obtained between calculated values and field measurements. The heterogeneity of grain size obtained from this study can provide a basis for future modeling efforts. Gas transport analysis focused on 1) substantiating the relationship between wind flow external to the waste-rock pile and gas pressures within the pile, 2) determining the gas flow regime in the pile, and 3) quantifying the temporal variation in wind speed and direction and determining the relevant time scales. Differential gas pressures were measured in 2008 at 49 locations within one of the three test waste-rock piles and 14 locations on the surface of the pile at one-minute intervals. Wind speed and direction were measured at 10-min intervals. Correlations between wind vectors and pressure measurements show that the wind influences pressure fluctuations in the test pile. The strength of the correlation is roughly inversely proportional to the distance between measurement ports and the atmospheric boundary. The linear relationship between internal pressure measurements and surface pressure measurements demonstrate that gas flow is Darcian within the test waste-rock pile. Spectral analysis of wind data and a one-dimensional analytical solution to the flow equations show that the persistence of wind in a certain direction has most pronounced effects on transient gas flow within the pile. The penetration depth of wind-induced gas pressure wave is a function of the periodicity of the wind and permeability of the waste-rock pile.
17

Temporal variability of riverbed conductance at the Bolton well field along the Great Miami River, southwest Ohio characterization of riverbed sediments during low-flow conditions /

Idris, Omonigho. January 2006 (has links)
Thesis (M. En.)--Miami University, Institute of Environmental Sciences, 2006. / Title from first page of PDF document. Includes bibliographical references (p. 33-35).
18

UPNS4D+ – Neue Ansätze für die Kluftflächen- und Haufwerksanalyse

Donner, Ralf, Geier, Andreas, John, André 28 September 2017 (has links) (PDF)
Der Zugang zu wirtschaftsstrategischen Bodenschätzen ist für moderne Industriegesellschaften von essenzieller Bedeutung. Für Deutschland besteht für die Versorgung mit nichtenergetischen Rohstoffen wie Stahlveredlern und Seltenen-Erden eine weitgehende Importabhängigkeit. Vorhandene heimische Lagerstätten weisen eine komplexe geologische Struktur mit geringen Abbaumächtigkeiten in großen Teufen auf. Um diese Lagerstätten nutzen zu können, soll ein untertagetaugliches Positionierungs- und Navigationssystem, UPNS4D+, für die Erkundung der Lagerstätte entwickelt und als Demonstrationssystem gebaut werden. Das Institut für Markscheidewesen und Geodäsie der TU Bergakademie ist Teil des Entwicklerkonsortiums. Es ist zuständig für die markscheiderische und bergmännische Nutzbarkeit der mit dem Erkundungssystem gewonnen Daten. Entsprechend dem aktuellen Arbeitsfortschritt werden im vorliegenden Beitrag die Lösungen für die Kluftflächen- und die Haufwerksanalyse vorgestellt. Die teilautomatisierte Haufwerksanalyse dient der Detektion großer Partikel und deren Lagebestimmung in einem relativen Koordinatensystem. / Access to strategic mineral resources is essential for modern industrial societies. Germany is largely dependent on imports of non-energy raw materials such as steel refiners and rare earth elements. Existing indigenous deposits have a complex geological structure with low extraction thickness in large depths. In order to use these deposits, an underground positioning and navigation system, namely UPNS4D+, as a demonstration system has to be developed for deposit exploration. As part of the developer consortium, the Institute for Mining Surveying and Geodesy of the TU Bergakademie Freiberg is responsible for the utilization of the acquired data in the field of mining. According to the current work status, in this paper the solutions for rock fracture analysis and grain size analysis are presented. The partly automated grain size analysis is used for the detection of large particles and their position in a relative coordinate system.
19

Stanovení obsahu vody v zemině metodou EIS / Determination of water content in the soil by method EIS

Šandová, Iva January 2013 (has links)
This thesis deals with the measurement of water content in soil using electrical impedance spectrometry. The aim is to characterize and determine the conditions of applicability of this method and of measuring apparatus with device Z-meter III for instance for the application of the field measurements of earth dams.
20

Ověření empirických vztahů pro výpočet hydraulické vodivosti / Assessment of empirical formulae for determining hydraulic conductivity

Barenčík, Ladislav January 2016 (has links)
The main purpose of this diploma thesis is to check up and compare empirical formulae (Hazen, Slichter, Terzaghi, Beyer, Zauerbrej, Krüger, Kozeny, Zunker, Zamarin, USBR, Pavčič) for determining hydraulic conductivity, which are mostly publicated in different and dimensionally inhomogenous forms. The importance of an accurate determination of hydraulic conductivity and the derivation of a general formula for determining hydraulic conductivity are listed in the first part of this diploma thesis. Assessment methodology and empirical formulae in dimensional homogenous form are described in the following part. Evaluating and comparing of empirical formulae is mentioned in the last part. According to the results of this diploma thesis, the best empirical formula for determinig and estimating hydraulic conductivity is Hazen formula. Formula with the widest range of validity is Slichter formula.

Page generated in 0.1487 seconds