• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis Using Size Exclusion Chromatography of poly(N-isopropyl acrylamide) using Methanol as an Eluent

Swift, Thomas, Hoskins, Richard, Telford, Richard, Plenderleith, R.A., Pownall, David, Rimmer, Stephen 25 May 2017 (has links)
Yes / Size Exclusion Chromatography is traditionally carried out in either aqueous or non-polar solvents. A system to present molar mass distributions of polymers using methanol as a mobile phase is presented. This is shown to be a suitable system for determining the molar mass distributions poly(N-isopropylacrylamide)s (PNIPAM); a polymer class that is often difficult to analyze by size exclusion chromatography. DOSY NMR was used to provide intrinsic viscosity data that was used in conjunction with a viscometric detector to provide absolute calibration. Then the utility of the system was shown by providing the absolute molar mass distributions of dispersed highly branched PNIPAM with biologically functional end groups. / Wellcome Trust
2

Enhanced gel electrophoresis (GE) and inductively coupled plasma-mass spectrometry (ICP-MS) based methods for the identification and separation of proteins and peptides

Haider, Syed January 2012 (has links)
The main focus of the PhD study was to develop new gel electrophoresis and ICP-MS based methods to analyze a wide variety of the bio-molecules such as proteins, phosphoproteins and metalloproteins etc. The tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (tricine-SDS-PAGE) method is commonly used to resolve low molecular mass proteins, however, it requires a high percentage gel and a very complicated procedure to achieve this separation. This study describes a modification to tricine-SDS-PAGE to make it more effective for the separation of smaller proteins and for coupling to ICP-MS. The modified method employs low percentage PAGE gels and low reagent concentrations that provide efficient separations, good quantitation and low matrix levels that are compatible with ICP-MS. This modified method was applied to analyze phosphopeptides. Phosphopeptides are very small in size and difficult to separate using the other techniques such as Laemmli SDS-PAGE, original tricine-SDS-PAGE, immobilized metal affinity chromatography (IMAC), size exclusion chromatography (SEC) etc. In this study a simplified procedure is described based on modifying the original tricine-SDS-PAGE method. A comparative study showed that this modified method successfully resolved a digest mixture of very low to high molecular mass phosphopeptides/peptides. In off-line coupling of this method with ICP-MS, much better recoveries of the peptides from the gel were obtained as compared to traditional methods which indicate the compatibility of this modified method for quantitative studies. An on-line coupling of the modified system with ICP-MS was also demonstrated and it was applied for the separation, detection and quantification of phosphopeptides. Another application of this modified system was the separation of serum proteins. Blood serum contains five major protein groups i.e., albumin, alpha-1 globulin, alpha-2 globulin, beta globulin and gamma globulin. The separation of these five major proteins in a single gel is difficult to achieve using traditional methods. The modified system was shown to be superior for the separation of these serum proteins in a 7% (m/v) native-PAGE gel and a cellulose acetate membrane. A further study was carried out into controlling the factors that cause metal loss and protein fragmentation in SDS-PAGE. Using a reducing sample buffer, and heating to high temperatures (90-100ºC) in alkaline or acidic conditions may cause protein fragmentation and decrease the metal binding affinity. 70ºC was found suitable to prepare the sample at neutral, alkaline or acidic pH as no fragmentation observed. To prevent metal loss, the binding constant (log K) values of metal-amino acids, play the major role. Those metals which have high binding affinities with the amino acids in proteins can also be affected by the variation of the pH so prior information about pH to maintain the binding constant values is essential to minimize metal loss. This was observed in the loss of zinc, and to a lesser extent copper from human serum albumin (HSA) as measured by inductively coupled plasma mass spectrometry (ICP-MS). The method described above was applied for the separation and quantification of the serum proteins obtained from age-related macular degeneration (AMD) patients (where the AMD patients were from Moorfields Eye Hospital, London). Zn and Cu were quantified employing external calibration. Zn concentration showed variation whilst Cu did not show any significant variations in samples from AMD patients. A brief study of the interaction of cisplatin and oxaliplatin with HSA and transferrin was also performed. Cisplatin bound much faster than oxaliplatin with HSA. After 24 hours incubation, cisplatin showed a decrease in signal intensity which indicates that cisplatin binding decreases with time. Cisplatin binding with transferrin as compared to HSA was not significant, which could be the result of unstable Pt-transferrin complex formation. Oxaliplatin did not show high binding to either protein, perhaps due to the presence of the bulky, non polar DACH ligand.
3

Nature, origine et réactivité de la matière organique fossile dans les sols et sédiments : développements et applications de la photoionisation - spectrométrie de masse haute résolution (APPI-QTOF) et couplage avec la chromatograhie d'exclusion stérique (SEC) / Nature, origin and reactivity of fossil organic matter in soils and sediments : Developments and applications of the Photoionization - High Resolution Mass Spectrometry (APPI-QTOF) and Coupling with Size Exclusion Chromatography (SEC)

Ghislain, Thierry 08 July 2011 (has links)
Le développement des outils analytiques pour l'analyse de la matière organique complexe en géochimie organique a connu de nombreuses avancées ces dernières années. Ce développement a permis de répondre à un grand nombre de questions quant à la composition de la matière organique. Cependant, beaucoup des points restent encore à élucider comme notamment la caractérisation des fractions de hauts poids moléculaires ainsi que le suivi de la réactivité de la matière organique. Ce travail de thèse a eu pour objectif (i) d'adapter les techniques de spectrométrie de masse déjà existantes pour l'analyse de la matière organique fossile (notamment par la sélection de la source d'ionisation atmosphérique la plus adaptée) mais également (ii) de développer un nouveau type de couplage entre la chromatographie d'exclusion stérique (SEC) et la spectrométrie de masse APPI-QTOF pour l'analyse des fractions peu polaires de hauts poids moléculaires. L'adaptation du l'APPI-QTOF a tout d'abord permis de mieux comprendre la réactivité de contaminants organiques polyaromatiques en présence de phases minérales. Le couplage SEC-APPI-QTOF a, quant à lui, permis d'améliorer les connaissances sur la structure des asphaltènes. Cependant, malgré la « simplification » rendue possible par la SEC, la très grande quantité d'informations reste difficile à interpréter et prend beaucoup de temps. Un modèle mathématique a donc été développé basé sur des analyses numériques et statistiques des spectres de masse, permettant de les comparer entre eux afin de distinguer l'origine des échantillons et de suivre l'impact de processus physico-chimiques (altérations naturelles - traitements de remédiation). / The development of analytical tools for organic geochemistry analysis has increased these past years. This development has allowed answering many questions about organic matter composition. However, many issues remain to be clarified including the characterization of high molecular weight fractions and monitoring the reactivity of organic matter. This thesis has focused on both (i) existing method improvements for fossil organic geochemistry analysis but also on (ii) developing a new type of coupling between the size exclusion chromatography (SEC) and the APPI-QTOF mass spectrometry for high molecular weight weakly polar fractions. Adjustments on APPI-QTOF mass spectrometry have allowed a better understanding of polyaromatic organic contaminant reactivity in presence of mineral matrices. The success of this coupling has allowed a better understanding of the structure of asphaltenes. However despite the "simplification" obtained by the SEC, the large amount of information remains difficult to interpret and time-consuming. A mathematical model has been developed based on numerical and statistical analysis of mass spectra, allowing direct comparison of mass spectra and being able to identify several types of information such as origins of samples, monitoring of physico-chemical processes and also the efficiency of soil recovery treatments as well as the identification of analytical protocols.

Page generated in 0.1257 seconds