• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Idempotents de Jones-Wenzl évaluables aux racines de l'unité et représentation modulaire sur le centre de $overline{U}_q sl_2$. / Evaluable Jones-Wenzl idempotents at roots of unity and modular representation on the center of $overline{U}_q sl_2$

Ibanez, Elsa 04 December 2015 (has links)
Soit $p in N^*$. On définit une famille d'idempotents (et de nilpotents) des algèbres de Temperley-Lieb aux racines $4p$-ième de l'unité qui généralise les idempotents de Jones-Wenzl usuels. Ces nouveaux idempotents sont associés aux représentations simples et indécomposables projectives de dimension finie du groupe quantique restreint $Uq$, où $q$ est une racine $2p$-ième de l'unité. A l'instar de la théorie des champs quantique topologique (TQFT) de [BHMV95], ils fournissent une base canonique de classes d'écheveaux coloriés pour définir des représentations des groupes de difféotopie des surfaces. Dans le cas du tore, cette base nous permet d'obtenir une correspondance partielle entre les actions de la vrille négative et du bouclage, et la représentation de $SL_2(Z)$ de [LM94] induite sur le centre de $Uq$, qui étend non trivialement de la représentation de $SL_2(Z)$ obtenue par la TQFT de [RT91]. / Let $p in N^*$. We define a family of idempotents (and nilpotents) in the Temperley-Lieb algebras at $4p$-th roots of unity which generalizes the usual Jones-Wenzl idempotents. These new idempotents correspond to finite dimentional simple and projective indecomposable representations of the restricted quantum group $Uq$, where $q$ is a $2p$-th root of unity. In the manner of the [BHMV95] topological quantum field theorie (TQFT), they provide a canonical basis in colored skein modules to define mapping class groups representations. In the torus case, this basis allows us to obtain a partial match between the negative twist and the buckling actions, and the [LM94] induced representation of $SL_2(Z)$ on the center of $Uq$, which extends non trivially the [RT91] representation of $SL_2(Z)$.
2

Mapping class groups, skein algebras and combinatorial quantization / Groupes de difféotopie, algèbres d'écheveaux et quantification combinatoire

Faitg, Matthieu 16 September 2019 (has links)
Les algèbres L(g,n,H) ont été introduites par Alekseev-Grosse-Schomerus et Buffenoir-Roche au milieu des années 1990, dans le cadre de la quantification combinatoire de l'espace de modules des G-connexions plates sur la surface S(g,n) de genre g avec n disques ouverts enlevés. L'algèbre de Hopf H, appelée algèbre de jauge, était à l'origine le groupe quantique U_q(g), avec g=Lie(G). Dans cette thèse nous appliquons les algèbres L(g,n,H) à la topologie en basses dimensions (groupe de difféotopie et algèbres d'écheveaux des surfaces), sous l'hypothèse que H est une algèbre de Hopf de dimension finie, factorisable et enrubannée mais pas nécessairement semi-simple, l'exemple phare d'une telle algèbre de Hopf étant le groupe quantique restreint associé à sl(2) (à une racine 2p-ième de l'unité). D'abord, nous construisons en utilisant L(g,n,H) une représentation projective des groupes de difféotopie de S(g,0)D et de S(g,0) (où D est un disque ouvert). Nous donnons des formules pour les représentations d'un ensemble de twists de Dehn qui engendre le groupe de difféotopie; en particulier ces formules nous permettent de montrer que notre représentation est équivalente à celle construite par Lyubashenko-Majid et Lyubashenko via des méthodes catégoriques. Pour le tore S(1,0) avec le groupe quantique restreint associé à sl(2) comme algèbre de jauge, nous calculons explicitement la représentation de SL(2,Z) en utilisant une base convenable de l'espace de représentation et nous en déterminons la structure.Ensuite, nous introduisons une description diagrammatique de L(g,n,H) qui nous permet de définir de façon très naturelle l'application boucle de Wilson W. Cette application associe un élément de L(g,n,H) à chaque entrelac dans (S(g,n)D) x [0,1] qui est parallélisé, orienté et colorié par des H-modules. Quand l'algèbre de jauge est le groupe quantique restreint associé à sl(2), nous utilisons W et les représentations de L(g,n,H) pour construire des représentations des algèbres d'écheveaux S_q(S(g,n)). Pour le tore S(1,0) nous étudions explicitement cette représentation. / The algebras L(g,n,H) have been introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the middle of the 1990's, in the program of combinatorial quantization of the moduli space of flat G-connections over the surface S(g,n) of genus g with n open disks removed. The Hopf algebra H, called gauge algebra, was originally the quantum group U_q(g), with g = Lie(G). In this thesis we apply these algebras L(g,n,H) to low-dimensional topology (mapping class groups and skein algebras of surfaces), under the assumption that H is a finite dimensional factorizable ribbon Hopf algebra which is not necessarily semisimple, the guiding example of such a Hopf algebra being the restricted quantum group associated to sl(2) (at a 2p-th root of unity).First, we construct from L(g,n,H) a projective representation of the mapping class groups of S(g,0)D and of S(g,0) (D being an open disk). We provide formulas for the representations of Dehn twists generating the mapping class group; in particular these formulas allow us to show that our representation is equivalent to the one constructed by Lyubashenko-Majid and Lyubashenko via categorical methods. For the torus S(1,0) with the restricted quantum group associated to sl(2) for the gauge algebra, we compute explicitly the representation of SL(2,Z) using a suitable basis of the representation space and we determine the structure of this representation.Second, we introduce a diagrammatic description of L(g,n,H) which enables us to define in a very natural way the Wilson loop map W. This maps associates an element of L(g,n,H) to any link in (S(g,n)D) x [0,1] which is framed, oriented and colored by H-modules. When the gauge algebra is the restricted quantum group associated to sl(2), we use W and the representations of L(g,n,H) to construct representations of the skein algebras S_q(S(g,n)). For the torus S(1,0) we explicitly study this representation.

Page generated in 0.0621 seconds