Spelling suggestions: "subject:"qft"" "subject:"tqft""
1 |
Gauged Linear Sigma Model and Mirror SymmetryGu, Wei 02 July 2019 (has links)
This thesis is devoted to the study of gauged linear sigma models (GLSMs) and mirror symmetry. The first chapter of this thesis aims to introduce some basics of GLSMs and mirror symmetry. The second chapter contains the author's contributions to new exact results for GLSMs obtained by applying supersymmetric localization. The first part of that chapter concerns supermanifolds. We use supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding Atwisted GLSM correlation functions for hypersurfaces. The second part of that chapter defines associated Cartan theories for non-abelian GLSMs by studying partition functions as well as elliptic genera. The third part of that chapter focuses on N=(0,2) GLSMs. For those deformed from N=(2,2) GLSMs, we consider A/2-twisted theories and formulate the genuszero correlation functions in terms of Jeffrey-Kirwan-Grothendieck residues on Coulomb branches, which generalize the Jeffrey-Kirwan residue prescription relevant for the N=(2,2) locus. We reproduce known results for abelian GLSMs, and can systematically calculate more examples with new formulas that render the quantum sheaf cohomology relations and other properties manifest. We also include unpublished results for counting deformation parameters. The third chapter is about mirror symmetry. In the first part of the third chapter, we propose an extension of the Hori-Vafa mirrror construction [25] from abelian (2,2) GLSMs they considered to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. We formally show that topological correlation functions of B-twisted mirror LGs match those of A-twisted gauge theories. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. In the last part of the third chapter, we propose an extension of the Hori-Vafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples which were produced by laborious guesswork. The last chapter briefly discusses some directions that the author would like to pursue in the future. / Doctor of Philosophy / In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.
|
2 |
On Integrality of SO(n)-Level 2 TQFTsWang, Yilong 07 November 2018 (has links)
No description available.
|
3 |
TQFT diffeomorphism invariants and skein modulesDrube, Paul Harlan 01 May 2011 (has links)
There is a well-known correspondence between two-dimensional topological quantum field theories (2-D TQFTs) and commutative Frobenius algebras. Every 2-D TQFT also gives rise to a diffeomorphism invariant of closed, orientable two-manifolds, which may be investigated via the associated commutative Frobenius algebras. We investigate which such diffeomorphism invariants may arise from TQFTs, and in the process uncover a distinction between two fundamentally different types of commutative Frobenius algebras ("weak" Frobenius algebras and "strong" Frobenius algebras). These diffeomorphism invariants form the starting point for our investigation into marked cobordism categories, which generalize the local cobordism relations developed by Dror Bar-Natan during his investigation of Khovanov's link homology.
We subsequently examine the particular class of 2-D TQFTs known as "universal sl(n) TQFTs". These TQFTs are at the algebraic core of the link invariants known as sl(n) link homology theories, as they provide the algebraic structure underlying the boundary maps in those homology theories. We also examine the 3-manifold diffeomorphism invariants known as skein modules, which were first introduced by Marta Asaeda and Charles Frohman. These 3-manifold invariants adapt Bar-Natan's marked cobordism category (as induced by a specific 2-D TQFT) to embedded surfaces, and measure which such surfaces may be embedded within in 3-manifold (modulo Bar-Natan's local cobordism relations). Our final results help to characterize the structure of such skein modules induced by universal sl(n) TQFTs.
|
4 |
Topological Quantum Field Theories forSubmanifoldsMatthew, Humphreys 17 May 2023 (has links)
No description available.
|
5 |
Sur les représentations quantiques des groupes modulaires des surfaces / On the quantum representations of mapping class groups of surfacesKorinman, Julien 28 November 2014 (has links)
Cette thèse porte sur l'étude de certaines familles de représentations projectives des groupes modulaires de surfaces issues de théories topologiques quantiques de champs. Les résultats principaux portent sur leur décomposition en facteurs irréductibles. / This thesis deals with some families of projective representations of the mapping class groups of surfaces arising in topological quantum field theories. The main results concern their decomposition into irreducible factors.
|
6 |
TQFTs from Quasi-Hopf Algebras and Group CocyclesGeorge, Jennifer Lynn 27 August 2013 (has links)
No description available.
|
7 |
Théories des champs quantiques topologiques internes de type Reshetikhin-Turaev / Internal Reshetikhin-Turaev Topological Quantum Field TheoriesLallouche, Mickaël 31 October 2016 (has links)
Une théorie des champs quantique topologique (TQFT) en dimension 3 est un foncteur monoidal symétrique de la catégorie des cobordismes de dimension 3 vers celle des espaces vectoriels. Une TQFT fournit en particulier un invariant scalaire des variétés fermées de dimension 3 ainsi que des représentations du groupe de difféotopie des surfaces fermées.Turaev explique en 1994 comment construire à partir d'une catégorie modulaire une TQFT qui étend l'invariant scalaire de 3-variétés fermées introduit en 1991 par Reshetikhin et Turaev. Dans cette thèse, nous généralisons cette construction à l'aide d'une catégorie C en ruban avec coend. On représente un cobordisme par un enchevêtrement d'un type particulier (enchevêtrement de cobordisme) et on associe à celui-ci un morphisme défini entre puissances tensorielles de la coend comme décrit par Lyubashenko en 1995. A l'aide de l'extension du calcul de Kirby aux cobordismes de dimension 3, cette construction nous permet de produire un invariant de cobordismes puis une TQFT à valeurs dans la sous-catégorie monoïdale symétrique des objets transparents de C.Dans le cas où C est une catégorie modulaire, cette sous-catégorie s'identifie à celle des espaces vectoriels et on retrouve ainsi la TQFT de Turaev. Dans le cas où C est une catégorie prémodulaire modularisable, notre TQFT est un relèvement de la TQFT de Turaev associée à la modularisée de C. / A 3-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor from the category of 3-cobordisms to the category of vector spaces. Such TQFTs provide in particular numerical invariants of closed 3-manifolds and representations of the mapping class group of closed surfaces.In 1994, Turaev explains how to construct a TQFT from a modular category; the scalar invariant is then the Reshethikhin-Turaev invariant introduced in 1991. In this thesis, we describe a generalization of this construction starting from a ribbon category C with coend. We present a cobordism by a certain type of tangle (cobordism tangle) and we associate to such a tangle a morphism between tensor products of the coend as described by Lyubashenko in 1994. Extending the Kirby calculus to 3-cobordisms, we obtain in this way an invariant of cobordisms and a TQFT which takes values in the symmetric monoidal subcategory of transparent objects of C. If the category C is modular, this subcategory can be identified with the category of vector spaces, and we recover Turaev's TQFT. If the category C is modularizable, our TQFT is a lift of the Turaev TQFT for the modularization of C.
|
8 |
Idempotents de Jones-Wenzl évaluables aux racines de l'unité et représentation modulaire sur le centre de $overline{U}_q sl_2$. / Evaluable Jones-Wenzl idempotents at roots of unity and modular representation on the center of $overline{U}_q sl_2$Ibanez, Elsa 04 December 2015 (has links)
Soit $p in N^*$. On définit une famille d'idempotents (et de nilpotents) des algèbres de Temperley-Lieb aux racines $4p$-ième de l'unité qui généralise les idempotents de Jones-Wenzl usuels. Ces nouveaux idempotents sont associés aux représentations simples et indécomposables projectives de dimension finie du groupe quantique restreint $Uq$, où $q$ est une racine $2p$-ième de l'unité. A l'instar de la théorie des champs quantique topologique (TQFT) de [BHMV95], ils fournissent une base canonique de classes d'écheveaux coloriés pour définir des représentations des groupes de difféotopie des surfaces. Dans le cas du tore, cette base nous permet d'obtenir une correspondance partielle entre les actions de la vrille négative et du bouclage, et la représentation de $SL_2(Z)$ de [LM94] induite sur le centre de $Uq$, qui étend non trivialement de la représentation de $SL_2(Z)$ obtenue par la TQFT de [RT91]. / Let $p in N^*$. We define a family of idempotents (and nilpotents) in the Temperley-Lieb algebras at $4p$-th roots of unity which generalizes the usual Jones-Wenzl idempotents. These new idempotents correspond to finite dimentional simple and projective indecomposable representations of the restricted quantum group $Uq$, where $q$ is a $2p$-th root of unity. In the manner of the [BHMV95] topological quantum field theorie (TQFT), they provide a canonical basis in colored skein modules to define mapping class groups representations. In the torus case, this basis allows us to obtain a partial match between the negative twist and the buckling actions, and the [LM94] induced representation of $SL_2(Z)$ on the center of $Uq$, which extends non trivially the [RT91] representation of $SL_2(Z)$.
|
9 |
Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) / Topological quantum field theory for Lie superalgebra sl(2|1)Ha, Ngoc-Phu 07 December 2018 (has links)
Ce texte étudie le groupe quantique Uξ sl(2|1) associé à la superalgèbre de Lie sl(2|1) et une catégorie de ses représentations de dimension finie. L'objectif est de construire des invariants topologiques de 3-variétés en utilisant la notion de trace modifiée. D'abord nous prouvons que la H catégorie CH des modules de poids nilpotents sur Uξ sl(2|1) est enrubannée et qu'il existe une trace modifiée sur son idéal des modules projectifs. De plus CH possède une structure relativement G-prémodulaire ce qui est une condition suffisante pour construire un invariant de 3-variétés à la Costantino-Geer-Patureau. Cet invariant est le cœur d'une 1+1+1-TQFT (Topological Quantum Field Theory). D'autre part Hennings a proposé à partir d'une algèbre de Hopf de dimension finie une construction d’invariants qui dispense de considérer la catégorie de H l l ses représentations. Nous montrons que le groupe quantique déroulé Uξ sl(2|1)/(e1 , f1 ) possède une complétion qui est une algèbre de Hopf enrubannée topologique. Nous construisons un invariant de 3-variétés à la Hennings en utilisant cette structure algébrique, une transformation de Fourier discrète et la notion de G-intégrales. L'intégrale dans une algèbre de Hopf est centrale dans la construction de Hennings. La notion de trace modifiée dans une catégorie s'est récemment révélée être une généralisation des intégrales dans les algèbres de Hopf de dimension finie. Dans un contexte plus général d'algèbre de Hopf de dimension infinie nous prouvons la relation formulée entre la trace modifiée et la G -intégrale. / This text studies the quantum group Uξ sl(2|1) associated with the Lie superalgebra sl(2|1) and a category of finite dimensional representations. The aim is to construct the topological invariants of 3-manifolds using the notion of modified trace. We first prove that the category CH of the nilpotent weight modules over Uξ sl(2|1) is ribbon and that there exists a modified trace on its ideal of projective modules. Furthermore, CH possesses a relative G-premodular structure which is a sufficient condition to construct an invariant of 3-manifolds of Costantino-Geer-Patureau type. This invariant is the heart of a 1+1+1-TQFT (Topological Quantum Field Theory). Next Hennings proposed from a finite dimensional Hopf algebra, a construction of invariants which does not require to consider the category of its representations. We show that the unrolled H l l quantum group Uξ sl(2|1)/(e1 , f1 ) has a completion which is a topological ribbon Hopf algebra. We construct an invariant of 3-manifolds of Hennings type using this algebraic structure, a discrete Fourier transform, and the notion of G-integrals. The integral in a Hopf algebra is central in the construction of Hennings. The notion of modified trace in a category has recently been revealed to be a generalization of the integrals in a finite dimensional Hopf algebra. In a more general context of infinite dimensional Hopf algebras we prove the relation formulated between the modified trace and the G-integral.
|
10 |
On Braided Monoidal 2-CategoriesPomorski, Kevin 24 May 2022 (has links)
No description available.
|
Page generated in 0.0387 seconds