Spelling suggestions: "subject:"skew fields."" "subject:"kew fields.""
1 |
General families of skew-symmetric distributions / Title on approval sheet: General families of asymmetric distributionsWahed, Abdus S. January 2000 (has links)
The family of univariate skew-normal probability distributions, an extension of symmetric normal distribution to a general case of asymmetry, was originally proposed by Azzalani [1]. Since its introduction, very limited research has been conducted in this area. An extension of the univariate skew-normal distribution to the multivariate case was considered by Azzalani and Dalla Valle [4]. Its application in statistics was recently considered by Azzalani and Capitanio [3]. As a general result, Azzalani (1985) [See [1]] showed that, any symmetric distribution can be viewed as a member of a more general class of skewed distributions.In this study we establish some properties of general family of skewed distributions. Examples of general family of asymmetric distributions is presented in a way to show their differences from the corresponding symmetric distributions. The skew-logistic distribution and its properties are considered in great details. / Department of Mathematical Sciences
|
2 |
Reliability studies of the skew normal distribution /Brown, Nicole Dawn, January 2001 (has links)
Thesis (M.A.) in Mathematics--University of Maine, 2001. / Includes vita. Includes bibliographical references (leaves 42-43).
|
3 |
Mη αντιμεταθετικά σώματα και ιδιότητες αυτώνΚατσούπης, Μανώλης 08 November 2007 (has links)
Τα σώματα, κυρίως τα μη αντιμεταθετικά, γενικά κατασκευάζονται ως σώματα κλασμάτων δακτυλίων, εντούτοις δεν έχουν όλοι οι δακτύλιοι σώμα κλασμάτων και για δοθέντα δακτύλιο μπορεί να είναι αρκετά δύσκολο να αποφανθούμε αν υπάρχει σώμα κλασμάτων. Στο κεφάλαιο 1 θα αναφέρουμε ορισμένες γενικές παρατηρήσεις πάνω στο είδος των συνθηκών, οι οποίες χαρακτηρίζουν την εμβάπτιση δακτυλίου σε σώμα κλασμάτων και δίνουμε αναγκαίες συνθήκες οι οποίες σχετίζονται με την τάξη των ελεύθερων modules. Στη συνέχεια περιγράφουμε τις συνθήκες του Ore για την εμβάπτιση αυτή, όπου γενικεύεται η αντιμεταθετική περίπτωση.
Στο δεύτερο κεφάλαιο εισάγουμε στοιχεία από τη γενική θεωρία τοπολογικών δακτυλίων και modules. Πιο συγκεκριμένα, παρουσιάζονται θεμελιώδεις έννοιες και βασικά αποτελέσματα πάνω στους τοπολογικούς δακτύλιους και τα τοπολογικά σώματα, δίνοντας ιδιαίτερη έμφαση στα στρεβλά σώματα. Πιο συγκεκριμένα εξετάζουμε φραγμένα σύνολα, τοπολογικούς μηδενοδιαιρέτες, τοπολογικά μηδενοδύναμα στοιχεία και minimal τοπολογίες. Αναφέρουμε, επίσης αρκετά παραδείγματα τοπολογιών επί δακτυλίων και modules. Στο κεφάλαιο 3 ορίζουμε διατιμήσεις επί των στρεβλών σωμάτων και ασχολούμαστε με το πρόβλημα ύπαρξης ψευδό-διατιμήσεων σε δακτυλίους και modules. / Fields, especially skew fields, are generally constructed as the field of fractions of some ring, but of course not every ring has a field of fractions and for a given ring it may be quite difficult to decide if a field of fractions exists. In chapter 1 we shall bring some general observations on the kind of conditions to expect and give some necessary conditions relating to the rank of free modules. On the other hand there is the Ore condition generalizing the commutative case.
Chapter 2 provides fundamental concepts and basic results on topological rings, modules and especially on skew fields. Under detailed consideration are bounded subsets, topological divisors of zero, topologically nilpotent elements and minimal topologies. There are also many examples of topologies on rings and modules. In chapter 3 we define norms on skew fields and discuss the problem of the existence of real-valued pseudonorms rings and modules.
|
4 |
Growth Mixture Modeling with Non-Normal Distributions - Implications for Class ImbalanceHan, Lu January 2024 (has links)
Previous simulation studies on the non-normal GMM are very limited with respect to examining effects of a high degree of class imbalance. To extend previous studies, the present study aims to examine through Monte Carlo simulation the impact of a higher degree of imbalanced class proportion (i.e., 0.90/0.10) on the performance of different distribution methods (i.e., normal, t, skew-normal, and skew-t) in estimating non-normal GMMs.
To fulfill this purpose, a Monte Carlo simulation was based on a two-class skew-t growth mixture model under different conditions of sample sizes (1000, 3000), class proportions (0.90/0.10, 0.50/0.50), skewness for intercept (1, 4), kurtosis (2, 6), and class separations (high, low), using the four different distributions (i.e., normal, t, skew-normal, and skew-t). Furthermore, another aim of the present study was to assess the ability of various model fit indices and LRT-based tests (i.e., AIC, BIC, sample size-adjusted BIC, LMR-LRT, LMR-adjusted LRT, and entropy) for detection non-normal GMMs under a higher degree of class imbalance (0.90/0.10).
The results indicate that (1) the skew-t distribution is highly recommended for estimating non-normal GMMs under high-class separation with highly imbalanced class proportions of 0.90/0.10, irrespective of sample size, skewness for intercept, and kurtosis; (2) For low-class separation with high class imbalance (0.90/0.10), the normal distribution is highly recommended based on the AIC, BIC, and sample size-adjusted BIC, while the skew-t distribution is most recommended based on the entropy; (3) poor class separation significantly reduces the performance of every distribution for estimating non-normal GMMs with high class imbalance, especially for the skew-t and t GMMs; (4) insufficient sample size significantly reduces the performance of the skew-t and t distributions for estimating non-normal GMMs with high class imbalance; (5) high class imbalance (0.90/0.10) and poor class separation significantly reduces the ability of the LRT-based tests for all distributions across different conditions; (6) excessive levels of skewness for the intercept significantly decreases the ability of most fit indices for the skew-t distribution (BIC and LRT-based tests), t (AIC, BIC, sBIC, and LRT-based tests), skew-normal (AIC and BIC), and normal (LRT-based tests) distributions when estimating non-normal GMMs with high class imbalance; (7) excessive levels of kurtosis has a partial negative effect on the performance of the skew-t (AIC, BIC, and LRT-based tests) and t (AIC, BIC, sBIC, and LRT-based tests) distributions when the level of skewness for intercept is excessive; and (8) for the highly imbalanced class proportions of 0.90/0.10, the sBIC and entropy for the skew-t distribution outperform the other fit indices under high-class separation, while the AIC, BIC, and sample size-adjusted BIC for the normal distribution and the entropy for the skew-t distribution are the most reliable fit indices under low-class separation.
|
5 |
Multidimensional local skew-fieldsZheglov, Alexander 10 July 2002 (has links)
In der gegebenen Arbeit werden hoeherdimensionale lokale Schiefkoerper, die natuerliche Verallgemeinerung von n-dimensionalen lokalen Koerpern, untersucht. Wir untersuchen nur Schiefkoerper mit kommutativem Restschiefkoerper. Wir geben eine hinreichende Bedingung fuer die Spaltbarkeit von Schiefkoerpern. Naemlich, ein lokaler Schiefkoerper ist spaltbar, falls er einen kanonischen Automorphismus unendlicher Ordnung hat. Wir klassifizieren alle Schiefkoerper, die diese Bedingung bis auf Isomorphie erfuellen. Die Ergebnisse sind unabhaengig von der Charakteristik des Schiefkoerpers. Wir klassifizieren auch alle lokalen spaltbaren Schiefkoerper von Charakteristik 0 mit kommutativem Restschiefkoerper und mit kanonischem Automorphismus von endlicher Ordnung. Unter anderem geben wir ein Kriterium, wann zwei Elemente aus einem solchen Schiefkoerper konjugiert sind. Als Folgerung beweisen wir, dass fast alle solche Schiefkoerper unendlichdimensional ueber ihrem Zentrum sind. Ausserdem beweisen wir, dass das Skolem-Noether Theorem nur in dem Fall des klassischen Ringes der Pseudodifferentialoperatoren richtig ist. Dann erhalten wir Anwendungen dieser Theorie auf die Krichever Korrespondenz. Naemlich, wir bekommen Verallgemeinerungen von klassischen KP-Gleichungen (Hierarchie). Die Untersuchung von lokalen Schiefkoerpern fuehrte zu einigen neuen unerwarteten Ergebnissen in der Bewertungstheorie auf endlichdimensionalen Algebren. Wir bekommen den Zerlegungssatz fuer wilde Divisionalgebren ueber Laurentreihen-Koerpern mit beliebigem Restkoerper der Charakteristik groesser als zwei. Dieses Theorem ist die Verallgemeinerung des Zerlegungssatzes fuer zahme Divisionalgebren von Jacob und Wadsworth. Als Folgerung bekommen wir die positive Antwort auf die folgende Vermutung: Fuer jede Divisionalgebra A ueber den Koerper F((t)), wo F ein quasialgebraisch abgeschlossener Koerper ist, muss der Exponent von A gleich dem Index von A sein. Dann erhalten wir Anwendungen dieser Theorie auf die Krichever Korrespondenz. Naemlich, wir bekommen Verallgemeinerungen von klassischen KP-Gleichungen (Hierarchie). Anderseits, fuehrt das Problem der Klassifizierung lokaler Schiefkoerper zu dem Problem der Klassifizierung der Konjugationsklassen in der Automorphismengruppe von n-dimensionalen lokalen (kommutativen) Koerpern. Wir loesen diese Aufgabe fuer die Gruppe der stetigen Automorphismen von 1- und 2-dimensionalen lokalen Koerpern. / In this work we study local skew fields, which are natural generalization of n-dimensional local fields, and their applications to the theory of central division algebras over henselian fields. We study mostly two-dimensional local skew fields with commutative residue skew field. The sufficient condition for a skew field to be split is given. Namely, a local skew field splits if the canonical automorphism has infinite order. We classify all the skew fields which posess this condition up to isomorphism. These results don't depend on the characteristic of a skew field. We classify all local splittable skew fields of characteristic 0 with commutative residue skew field and with the canonical automorphism of finite order as well. Some other properties of local skew fields are studied. In particular, we give a criterium when two elements from such a skew field conjugate. As a corollary we prove that almost all such skew fields are infinite dimensional over their center. Also we prove that the Scolem-Noether theorem holds only in the case of the classical ring of pseudo-differential operators. Studying of local skew fields leads to some new unexpected results in the valuation theory on finite dimensional division algebras. We get a decomposition theorem for some class of wild division algebras over a Laurent series field with arbitrary residue field of characteristic greater than two. This theorem is a generalization of the decomposition theorem for tame division algebras given by B.Jacob and A.Wadsworth. As a corollary we get the positive answer on the following conjecture: the exponent of a division algebra is equal to its index if the centre of this algebra is a Laurent series field with arbitrary quasialgebraically closed residue field. Using some ideas of A.N. Parshin, who raised a problem of classifying local skew fields, we get some applications of developed theory to the Krichever correspondence. Namely, we get some generalizations of the classical KP-equations (hierarchy). The problem of classification of local skew fields leads to the problem of classification of conjugacy classes in the automorphism group of an n-dimensional local (commutative) field. We solve this problem for the group of continuous automorphisms of one- and two- dimensional local fields.
|
6 |
The Diamond Lemma for Power Series AlgebrasHellström, Lars January 2002 (has links)
<p>The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds.</p><p>There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation.</p><p>The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders.</p>
|
7 |
The Diamond Lemma for Power Series AlgebrasHellström, Lars January 2002 (has links)
The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds. There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation. The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders.
|
Page generated in 0.0533 seconds