• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 13
  • 10
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Controle Skyhook aplicado a um modelo de suspensão hidropneumatica para carretas agricolas / Skyhook control of a hydropneumatic suspension system developed for use in agricultural farm wagons

Sa, Roberto Luis de 23 February 2006 (has links)
Orientador: Pablo Siqueira Meirelles / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-07T01:26:23Z (GMT). No. of bitstreams: 1 Sa_RobertoLuisde_M.pdf: 2111156 bytes, checksum: 0673c52c0192cecc5142208203b6adfb (MD5) Previous issue date: 2006 / Resumo: Este trabalho apresenta o desenvolvimento de um sistema de controle para um modelo de suspensão hidropneumática concebido para carretas agrícolas. A partir de um modelo não­ linear de um quarto de veículo com dois graus de liberdade foram implementados dois sis­temas de controle, um ativo e outro semi-ativo, ambos baseados na estratégia de controle Skyhook. Considerando-se duas excitações, uma do tipo degrau com amplitude de 40[mm]e outra do tipo variável com amplitudes contidas numa faixa de variação de +/- 30[mm], foram realizadas simulações para três situações diferentes: Com a massa suspensa na condição de carga mínima, na condição de carga média e na condição de carga máxima. Com desempenho próximo ao obtido para o sistema ativo no quesito isolação de vibrações, quando comparado com o caso passivo, o sistema semi-ativo não apresentou deteriorações significativas no mo­ vimento da massa não-suspensa. Foi mostrado que para a aplicação considerada o sistema semi-ativo mostrou ser a melhor opção, uma vez que é mais confiável e apresenta um custo de implementação mais baixo do que um sistema ativo / Abstract: This study deals with the development of a control system suited for a Hydropneumatic Suspension System designed for use in Agricultural Devices. Using the Skyhook Control methodology, two control systems are designed for a quarter car non-linear model, an active and a semi-active one. For performance measurement, two kinds of road excitation sources are considered: a 40[mm] amplitude bump and a variable road profile with amplitude range from -30 to +30[mm]. The simulations take into account three different situations: maximum sprung mass loading, minimum sprung mass loading and medium sprung mass loading. The resulting performance of the semi-active system was almost as good as the performance achieved by the active system and much better than the performance of the passive one. Since the semi-active system is more reliable and has a smaller implementation cost than the active one, for the application concerned it resulted to be the best solution / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
12

An Advanced Controller for a Semi-active Wheelchair Suspension

Smith, David J 01 January 2011 (has links) (PDF)
An Advanced Controller for a Semi-Active Wheelchair Suspension was designed, built and tested. The suspension consisted of a Goodyear 1S3-011 air spring, IQ Valves high speed proportional solenoid valve, and a custom made accumulator. Several controller designs specific to semi-active suspensions were designed and tested. The controllers investigated were skyhook, acceleration driven damping, and a combined control law employing both a dual and single sensor version. The implementation of skyhook control suffered performance degradation from the idealization due to particular elements of hardware, however acceleration driven damping showed a marked and statistically significant improvement over skyhook control, in hardware, by 14%. The combined control laws exhibited as yet unexplained transient behavior that produced results with low confidence in their veracity. All controllers proposed performed better than a conventional oil damper and spring type suspension.
13

Design of Adaptive Vibration Control Systems with Applicaion to Magneto-Rheological Dampers

Song, Xubin 18 November 1999 (has links)
The design of nonlinear adaptive control systems for reducing vibration transmission in applications such as transportation systems is discussed. The systems studied include suspension systems, such as those used in vehicles, employing nonlinear magneto-rheological (MR) dampers that are controlled to provide improved vibration isolation. Magneto-rheological dampers use a novel class of smart fluid whose apparent viscosity changes as it is exposed to a magnetic field. The developed adaptive control scheme is designed to deal with the nonlinearities and uncertainties that commonly arise in most suspension applications. Some of the nonlinearities that are considered include time-varying characteristics, displacement-dependent effects, and hysterisis damping of magneto-rheological dampers. The uncertainties include mass and stiffness variations that can commonly occur in a suspension system. A number of nonlinear analytical models are developed and used in numerical simulation to evaluate the validity and effectiveness of the developed adaptive controllers. Further, the results of the numerical study are used in an experimental evaluation of the controllers on a seat suspension for heavy vehicles. The analytical and experimental evaluation both indicate the effectiveness of the proposed adaptive control technique in controlling vibration transmission in the presence of both system nonlinearities and uncertainties. The manuscript will provide a detail account of the modeling, dynamic analysis, adaptive control development, and testing that was performed throughout this study. / Ph. D.
14

An Invertible Open-Loop Nonlinear Dynamic Temperature Dependent MR Damper Model

Jumani, Sajit Satish 10 June 2010 (has links)
A Magnetorheological damper is a commonly used component in semi-active suspensions that achieves a high force capacity and better performance than a passive system, without the added expense and power draw of a fully active system, all while maintaining failsafe performance. To fully exploit the capabilities of an MR Damper, a high fidelity controller is required that is simple and easy to implement, yet does not compromise the accuracy or precision needed in many high-performance applications. There is a growing need for this level of operation, and this proposed work addresses these requirements by creating an empirically derived invertible model that enables the development of more accurate command signals by capturing the effect of temperature on a MR Damper's performance capabilities. Furthermore, this solution is specifically tailored for real-time application and does not require force feedback. Thus it requires low computation power and minimizes end-user cost by eliminating the need for additional high cost sensors such as load cells. A notable observation that resulted from the development of this proposed model was the difference in behavior between on and off states. Additionally a unique behavior was recognized with respect to the transition between high speed and low speed damping. For validation, the proposed model was compared against experimental data as well as an industry standard Spencer model; it produced excellent results in both cases with minimal error. / Master of Science
15

Effect of Control Techniques on the Performance of Semiactive Dampers

Masi, John William 10 January 2002 (has links)
A computer simulation is used to examine the effects that various control methods have on the performance of semiactive dampers in controlling the dynamics of a single suspension (quarter car) model. The level of dynamic control of this model has a direct bearing on the ride comfort and vehicle handling, when the single suspension is interpreted as a partial model of a vehicle. The dynamic results obtained when using two alternative semiactive control methods are compared to the results obtained when using the more conventional control methods of passive damping, Skyhook control, and Hybrid control. The conventional control methods results confirm that the semiactive damper possesses a number of benefits when compared to passive damping. In addition, the alternative control methods, which are Displacement Skyhook and Displacement Hybrid, do not show benefits that are superior to passive damping or the conventional semiactive control methods. In support of the conclusions of this report, sufficient detail of the mathematical and numerical model is provided in the event that one should wish to recreate the results presented here. Next, the simulation results of each of the five control methods are presented individually. Several of the responses used in the results chapters are the transmissibility plots for the sprung and unsprung body displacement, the frequency spectrum of acceleration, and the frequency spectrum of the rattle space. In addition, the system response to a step input is calculated and, lastly, time traces are calculated, one at a time, for system excitations at the sprung and unsprung mass natural frequencies. The key dynamic measures studied are settling times, displacements, accelerations, and jerks. The responses just listed are then used in a comparison study between each of the presented control methods. / Master of Science
16

Optimal Force Distribution for Active and Semi-active Suspension Systems / Optimal kraftfördelning för aktiva och semiaktiva fjädringssystem

Kumarasamy, Gobi January 2022 (has links)
The development needs of handling and ride vehicle dynamic characteristics are constantly evolving, crucial for safety and comfortable commute since many active safety and driver assistance systems depend on these characteristics. Ride improvements enhance passenger comfort, which plays a significant role in quality and brand value. Chassis and suspension systems greatly influence these vehicle dynamic characteristics. These systems should provide stability, high precision and a high degree of adaptive performance with quick response time. One of the ways to achieve these demands is by incorporating mechatronics suspension systems. Semi-active and fully active mechatronics suspension systems offer passengers a more comprehensive range of vehicle characteristics in terms of driving experience than vehicles with purely mechanical suspension systems. The efficient implementation of mechatronics suspension systems depends on the controller type and how its commands are realised. A typical control strategy is to decide a desired behaviour on the vehicle body and realise that behaviour with the help of the semi-active or active actuators. This work focuses on the realisation of the modal coordinate controller commands that counteracts the undesired body motions. The commands are in vehicle body coordinates with respect to the COG of the vehicle. The biggest challenge is to translate these counteracting forces and torques into semi-active damper vertical forces. This challenge is addressed with different algorithms with different levels of complexity and capability. The complexity ranges from the linear system of equations to real-time optimisation. Essentially, the algorithms will fragmentise and distribute the centralised command among different actuators and finally realise them back as close as commanded by taking the actuator and other physical limitations into account. This work also focuses on developing relative weights tuning methods, which play a significant role in the cost function formation and optimisation solution. The algorithms are evaluated in three different road conditions to incorporate typical driving environments related to primary and secondary rides. The enhancements in the ride performance are visualised by comparing against the existing methodology. The conclusions strongly support the optimisation-based force allocation algorithm over the existing method. It enables significant improvements in the ride performance and a high degree of flexibility by efficiently distributing commands among four actuators, which results in utilising the full potential of the semi-active dampers. / Utvecklingsbehoven för fordons dynamiska egenskaper med avseende på åkkomfort och köregenskaper är ständigt föränderliga och är avgörande för säkerheten och bekväm pendling eftersom många aktiva säkerhets- och förarassistanssystem är beroende av dessa egenskaper. Åkkomfortförbättringar förbättrar passagerarnas komfort, vilket spelar en betydande roll för kvalitet och märkesvärde. Chassi och fjädringssystem påverkar i hög grad dessa fordonsdynamiska egenskaper. Dessa system ska ge stabilitet, hög precision och en hög grad av adaptiv prestanda med snabb responstid. Ett av sätten att uppnå dessa krav är genom att införliva mekatroniska fjädringssystem. Semiaktiva och fullt aktiva mekatronikfjädringssystem erbjuder passagerare ett mer omfattande utbud av fordonsegenskaper när det gäller körupplevelse än fordon med rent mekaniska upphängningssystem. Ett effektivt genomförande av semiaktiva eller aktiva fjädringssystem beror på styrenhetstypen och hur styrenhetens kommandon är realiserade. En typisk reglerstrategi är att bestämma ett önskat beteende på fordonets kaross och realisera det beteendet med hjälp av de semiaktiva eller aktiva dämparna. Detta arbete fokuserar på förverkligandet av de modala koordinatstyrkommandon som motverkar oönskade kroppsrörelser. Kommandona beskrivs i fordonskroppens koordinater med avseende på fordonets tyngdpunkt (COG). Den största utmaningen är att översätta dessa motverkande krafter och vridmoment till vertikala krafter för stötdämparna. Denna utmaning hanteras med olika algoritmer med olika nivåer av komplexitet och kapacitet. Komplexiteten sträcker sig från det linjära ekvationssystemet till optimering i realtid. I huvudsak kommer algoritmerna att fragmentera och distribuera det centraliserade kommandot bland olika dämpare och slutligen förverkliga dem tillbaka så nära kommandot som möjligt genom att ta hänsyn till ställdonet och andra fysiska begränsningar. Studien fokuserar också på att utveckla justeringsmetoder för relativa vikter, som spelar en viktig roll i kostnadsfunktionsbildningen och optimeringslösningen. Algoritmerna utvärderas under tre olika vägförhållanden för att inkludera typiska körmiljöer relaterade till primär och sekundär åkkomfort. Förbättringarna i körprestandan visualiseras genom att jämföra mot den befintliga metoden. Slutsatserna stöder starkt en optimeringsbaserad kraftallokeringsalgoritm över den befintliga metoden. Algoritmen möjliggör betydande förbättringar av prestandan och en hög grad av flexibilitet genom att effektivt fördela kommandot bland fyra ställdon, vilket resulterar i att utnyttja den fulla potentialen för de semiaktiva dämparna.
17

On Active Suspension in Rail Vehicles

Qazizadeh, Alireza January 2017 (has links)
The topic of this PhD thesis is active suspension in rail vehicles whichis usually realized through sensors, controllers and actuation components.A well established example of an active suspension is the tiltingcontrol system used to tilt the carbody in curves to reduce centrifugalacceleration felt by passengers. Active suspension for rail vehicles is beingstudied since 1970s and in this PhD thesis it has been tried to expandon some aspects of this topic.This study extends the research field by both experimental and theoreticalstudies. In the first phase of the study which led to a licentiatedegree the focus was more on experimental work with active verticalsuspension (AVS). This was implemented by introducing actuators inthe secondary suspension of a Bombardier test train, Regina 250, in thevertical direction. The aim has been to improve vertical ride comfort bycontrolling bounce, pitch and roll motions.In the second phase after the licentiate, the studies have been moretheoretical and can be divided into two parts. The first part of the workhas been more focused on equipping two-axle rail vehicles with differentactive suspension solutions for improving the vehicle performanceregarding comfort and wheel-rail interaction. Three papers are writtenon active suspension for two-axle rail vehicles. Two of the papers discussthe use of H¥ control for wheelset guidance in curves to reducewheel-rail damage. The third paper shows that by use of active verticaland lateral suspension (AVS and ALS) in two-axle rail vehicles goodcomfort can be achieved as well. The paper then studies how the threeactive suspension systems (ALS, AVS, and ASW) interact once implementedtogether on a two-axle rail vehicle.The second part is a study on safety of active suspension systems.The study discusses a possible procedure to ensure that a designed activesuspension for a rail vehicle will be safe in all possible failure situations. / <p>QC 20170602</p>
18

Návrh semiaktivního odpružení sedačky pro zemědělské stroje / Design of semiactive seat suspension for agricultural machines

Zindulka, Martin January 2020 (has links)
The thesis deals with design of a semiactive seat suspension system for an agriculture machines and design of dynamic model of the system, which includes real parameters of a magnetorheological (MR) damper. The dynamic model is a single degree of freedom model and it is made in program Matlab. In the model, response time of the MR damper and three control algorithms are implemented (two-state Skyhook, Skyhook linear approximation damper control and Acceleration Driven Damper control). Based on the results of the simulations, the damping characteristics are defined, and the MR damper is modified to achieve fast response time. A test seat is designed to test transmission of vibrations to the driver. The simulation results provide a comparison of efficiency of the seat suspension depending on the response time and control algorithm, as well as a comparison with a passive suspension system. On the designed test seat with MR damper with a fast response time, the vibration transmission is reduced up to 25 % compared with the best passive seat suspension setup.
19

Development Of A Control Strategy For Road Vehicles With Semi-active Suspensions Using A Full Vehicle Ride Model

Erdogan, Zeynep 01 February 2009 (has links) (PDF)
The main motivation of this study is the design of a control strategy for semi-active vehicle suspension systems to improve ride comfort for road vehicles. In order to achieve this objective, firstly the damping characteristics of Magnetorheological dampers will be reviewed. Then an appropriate semi-active control strategy manipulating the inputs of the dampers to create suitable damping forces will be designed. Linear Quadratic Regulator (LQR) control strategy is the primary focus area on semi-active control throughout this study. Further, skyhook controllers are examined and compared with optimal LQR controllers. The semi-active controller is tuned using a linearized full (4 wheel) vehicle ride model with seven degrees of freedom. Some selected simulations are carried out by using a nonlinear model to tune LQR controller in an effort to optimize bounce, pitch, and roll motion of the vehicle. Time domain simulations and frequency response analysis are used to justify the effectiveness of the proposed LQR control strategy.
20

Analysis of Vehicle Dynamics and Control of Occupant Biodynamics using a Novel Multi-Occupant Vehicle Model

Joshi, Divyanshu January 2016 (has links)
Due to the detrimental effects of ride vibrations on occupants and increasing safety concerns, improvement in vehicle dynamic characteristics has become a key focus of researchers. Typically, ride and handling problems have been dealt with independently. There is a dearth of vehicle models capable of capturing occupant biodynamics and its implication on vehicle ride and handling. Also in general, the objective of conventional control systems has been to attenuate vertical dynamic response of the sprung mass of a vehicle. Feedback control based algorithms are predominantly used in active/semi-active suspensions that ignore the biodynamics of occupants. In the current work, a new 50 degree-of-freedom (DOF) combined nonlinear multi-occupant vehicle model is developed using the lumped parameter modelling (LPM) approach. The current model provides a platform for performing a combined study of ride, handling and occupant biodynamics. The model is capable of simulating the combined effect of sitting occupancies, road inputs and driving maneuvers on biodynamic responses. It is analyzed using MATLAB/SIMULINK functionalities and validated by independently correlating the computed responses with existing experimental results. A study is performed on ride behavior of a vehicle-occupant system under two different transient road inputs. In addition, the effect of road roughness on vehicle ride is also studied. Random road profiles are generated from road roughness spectrum given in the ISO 8608:1995 manual. Insights are developed into the ride dynamics of a vehicle traversing over roads of classes A, B, C and D at given test velocities. The effect of sitting occupancies and vehicle velocities on lateral dynamics is also studied. Results underscore the need for considering sitting occupancies while analyzing vehicle dynamics and also highlight the potential of the current model. Furthermore, a Moore-Penrose Pseudoinverse based feed-forward controller is developed and implemented in an independently acting semi-active seat suspension system. Feasibility of feed-forward control in primary suspensions is also investigated. Finally, issues of stability, performance and limitation of the controller are discussed.

Page generated in 0.0272 seconds