• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 3
  • 3
  • Tagged with
  • 20
  • 20
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Strukturně- a sekvenčně-závislá identifikace funkčně významných aminokyselin v proteinové rodině. / Structure- and sequence-based identification of functionally important amino acids in a protein family

Peclinovská, Iveta January 2015 (has links)
A group of small GTPases consist of over twenty protein families in the super class P-loop. It has a very diverse cell functions. Small GTPases regulate the formation of vesicular follicles, cytoskeleton and nuclear transport. They participate also on cell proliferation and signaling. The aim of my work is to find important amino acids that define family and distinguish each other. I focus on families Arf, Rab, Ran, Ras and Rho. At the Rho family I am also devoted to classes Rho, Rac and Cdc42. Amino acids are identified using bioinformatic programs selected Consurf and Sca5. The objective is also to test P2RANK specialized tool developed at the Charles University in Prague that predict ligand binding sites from protein structure in different families. Founding amino acids can have a big role in the functional divergence of individual families and classes of small GTPases and can be the basis for future study example for the proliferation of cancerous cells. 1.1 Keywords Powered by TCPDF (www.tcpdf.org)
12

Funkce komplexu exocyst v sekreci a biogenezi buněčné stěny / Functions of the exocyst complex in secretion and cell wall biogenesis

Vukašinović, Nemanja January 2016 (has links)
The mechanical strength of plant tissues and organs can be attributed to specific properties of the cell wall. In many cases, in order to establish their final shape, cells deposit various cell wall materials in a localized manner. This is achieved by highly organized action of the endomembrane system which is essential for biosynthesis and secretion of cell wall proteins and polysaccharides. The exocyst complex is a conserved tethering complex in eukaryotes and it is involved in tethering of secretory vesicles to the sites of secretion at the plasma membrane. In this study, we address several aspects of the plant exocyst complex architecture and cell wall development using molecular biology techniques and advanced confocal microscopy. We demonstrated that two SEC10 exocyst subunits are present in Arabidopsis thaliana and share redundant functions. We also showed that the architecture of the plant exocyst complex shares several structural features with the yeast one. We demonstrated the importance of the functional EXO84b exocyst subunit for normal tracheary element development and showed that the main constituents of the secondary cell walls are deposited normally in exocyst mutants. We described a clear difference in the exocyst microtubule-independent dynamics in epidermal cells vs. cell type...
13

Studium vybraných podjednotek komplexu exocyst u rostlin a jejích interaktorů v autofagické dráze / Study of selected plant exocyst subunits and its interactors in autophagy pathway.

Rácová, Denisa January 2015 (has links)
Exocyst is a binding protein complex, which is evolutionary conserved in yeast, animal and in plant cells. It has crucial role in regulation of cell morfogenesis and cell polarity. The function of the exocyst complex is binding of secretoric vesicle to the proper side on plasma membrane in penultimate step of exocytosis. This process is essecial for function and survival of cell. Another process crucial for the cell is autophagy. In plants autophagy plays important role in the responses to nutrient starvation, senescence, abiotic and biotic stress. RabG3b are small GTPases, which have positive role in autophagy. In this work I described the interaction between RabG3b and some of subunits of exocyst complex: Exo70B1, Exo70B2 and Exo84b. I also studied changes in morfogenesis of tonoplast by induction and inhibition of authophagy and induction of anthocyans synthesis in Arabidopsis thaliana.
14

La petite GTPase Rab11 et ses interacteurs orchestrent la migration cellulaire collective et la cytocinèse chez la Drosophile

Laflamme, Carl 05 1900 (has links)
Le trafic vésiculaire permet un échange coordonné de molécules entre les différents organites de la cellule et dépend largement des petites GTPases de la famille des Rabs dont le nombre varie entre 27 chez la Drosophile et 70 chez l’Homme. Un des prochains défis consiste donc à élucider les mécanismes cellulaires qui coordonnent l’activité de ces Rabs, laquelle garantit un transport vésiculaire ordonné au sein de la cellule. Les Rabs agissent comme des interrupteurs moléculaires grâce à leur capacité à cycler entre un état actif et inactif. L’activité des Rabs est contrôlée par des protéines régulatrices puis des effecteurs en aval coordonnent leurs différentes fonctions. La petite GTPase Rab11 est essentielle au développement de plusieurs organismes incluant la Drosophile, C. elegans et la souris puisqu’elle se retrouve au cœur de différentes voies de transport. D’ailleurs, le trafic de molécules dépendant de Rab11 est perturbé dans plusieurs pathologies. Malgré son rôle central dans le trafic vésiculaire, la régulation de Rab11 reste peu comprise in vivo. Cette thèse se penche sur les mécanismes moléculaires contrôlant les fonctions de Rab11 et de ses effecteurs lors de la migration cellulaire collective et lors de la cytocinèse. Nous avons identifié Evi5 comme un nouvel acteur clé de la migration cellulaire collective, et nous montrons qu’elle possède une activité Rab11-GAP essentielle pour maintenir les récepteurs de guidance actifs de façon polarisée au front de migration. Nous avons ensuite déterminé que Rab11 régule la communication cellulaire lors de la migration collective par l’entremise de son interaction avec la Moésine. Une question reste toutefois en suspens : sachant que Rab11 compte plus de 13 effecteurs, quels sont les mécanismes assurant la spécificité de l’interaction entre cette GTPase et un effecteur particulier? Une partie de la réponse provient peut-être de nos observations que les membres des Rab11-FIPs de classe I, une famille d’effecteurs de Rab11, interagissent avec les protéines d’échafaudage 14-3-3. Chez la Drosophile, Rip11 est le seul représentant des Rab11-FIPs de classe I et nous montrons que Rip11 aurait des fonctions inattendues durant la cytocinèse qui seraient coordonnées par 14-3-3. Nos recherches permettent de dresser un portrait plus authentique des mécanismes moléculaires régulant les différentes fonctions de Rab11 et de ses effecteurs in vivo. / Vesicle trafficking allows coordinated exchange of molecules between the cell organelles and depends largely on small GTPases of the Rab family which contains 27 members in Drosophila and 70 in Human. One challenge is to identify the cellular mechanisms which coordinate Rab activity to ensure ordered vesicle transport within the cell. Rab proteins act like molecular switch by cycling between an active and an inactive state. Rab activity is regulated by helper proteins, whereas downstream effector proteins coordinate the Rab functions. The small GTPase Rab11 is crucial for Drosophila, C. elegans and mouse development since Rab11 is at the heart of different transport routes. Thus, Rab11-dependent trafficking of molecules is perturbed in different pathologies. Despite its central role during vesicle trafficking, the regulation of Rab11 in vivo is poorly characterized. This thesis focus on the molecular mechanisms controlling the function of Rab11 and its effectors during collective cell migration and cytokinesis. We identify Evi5 as a novel key regulator of collective cell migration and we show that Evi5 has Rab11-GAP activity essential for maintaining active guidance receptors at the leading edge. We then show that Rab11 regulates cell communication during collective cell movement through its interaction with Moesin. A question still remained unanswered: knowing that Rab11 has more than 13 effectors, which mechanisms assure the specificity of interaction between this small GTPase and a particular effector? Part of the answer might come from our observation that class I Rab11-FIPs, known Rab11 effectors, are able to bind to the 14-3-3 scaffolding proteins. In Drosophila, Rip11 is the sole member of the class I Rab11-FIPs and we show that Rip11 has unexpected functions during cytokinesis which are coordinated by 14-3-3. Our research allows us to better understand the molecular mechanisms regulating Rab11 and its effectors in vivo.
15

Structural Studies of the Inhibitory Role of Tctex-1 for the Microtubule-associated RhoGEF Lfc

Kim, Bong Kyu 25 August 2011 (has links)
Lfc is a guanine nucleotide exchange factor (GEF) for RhoA and is negatively regulated by its association with the microtubule array. Tctex-1, a light chain subunit of the dynein motor complex, was identified as an Lfc-interacting protein in a yeast two-hybrid screen. In mouse embryonic fibroblast (MEF) cells, over-expression of Tctex-1 represses Lfc-induced actin stress fiber and focal adhesion complex formation. Here, we present biochemical evidence obtained from a real-time, nuclear magnetic resonance (NMR)-based assay indicating that the microtubule exerts its inhibitory effect on Lfc through a mechanism that is dependent on the presence of Tctex-1. We also present NMR structure data showing that Lfc and the dynein intermediate chain (DIC) bind to different surfaces of Tctex-1. The biochemical and structural data together support a model in which Lfc is recruited to the microtubules through the dynein cargo adaptor function of Tctex-1, resulting in inhibition of Lfc function.
16

Structural Studies of the Inhibitory Role of Tctex-1 for the Microtubule-associated RhoGEF Lfc

Kim, Bong Kyu 25 August 2011 (has links)
Lfc is a guanine nucleotide exchange factor (GEF) for RhoA and is negatively regulated by its association with the microtubule array. Tctex-1, a light chain subunit of the dynein motor complex, was identified as an Lfc-interacting protein in a yeast two-hybrid screen. In mouse embryonic fibroblast (MEF) cells, over-expression of Tctex-1 represses Lfc-induced actin stress fiber and focal adhesion complex formation. Here, we present biochemical evidence obtained from a real-time, nuclear magnetic resonance (NMR)-based assay indicating that the microtubule exerts its inhibitory effect on Lfc through a mechanism that is dependent on the presence of Tctex-1. We also present NMR structure data showing that Lfc and the dynein intermediate chain (DIC) bind to different surfaces of Tctex-1. The biochemical and structural data together support a model in which Lfc is recruited to the microtubules through the dynein cargo adaptor function of Tctex-1, resulting in inhibition of Lfc function.
17

The role of PI4KB in cellular localization of small GTPases

Sadrpour, Parisa 30 August 2022 (has links)
No description available.
18

Rôles et mécanismes d’action de la protéine Epac dans l’hypertrophie cardiaque / Functions and signaling of Epac protein in cardiac hypertrophy

Laurent, Anne-Coline 17 July 2013 (has links)
Les catécholamines induisent la synthèse d’AMPc par une stimulation des récepteurs β-adrénergiques et contrôlent ainsi la fonction cardiaque en activant une pléiade de voies de signalisation intracellulaires. Les protéines Epac sont des facteurs d’échange pour les petites protéines G et sont directement activés par l’AMPc. Devant l’importance de la voie β-adrénergique dans la physiopathologie cardiaque et dans le but de mieux comprendre la régulation des processus cellulaires dépendants de l’AMPc dans le cœur, il apparaît essentiel de caractériser le rôle des facteurs d’échange Epac dans le myocarde. Dans une première partie, cette étude démontre que les effets de Epac sur l’hypertrophie des cardiomyocytes ventriculaires de rats nouveaux nés requièrent les GTPases H-Ras et Rap2B. Epac active la voie PLC/IP3/Ca2+ qui est nécessaire pour l’activation de H-Ras. Au niveau transcriptionnel, Epac induit l’export nucléaire de HDAC4 permettant l’activation d’un programme génique d’hypertrophie. Dans une deuxième partie, cette étude révèle l’implication de Epac1 dans l’hypertrophie des cardiomyocytes in vivo, chez la souris. La délétion de Epac1 protège du remodelage cardiaque induit par l’activation prolongée des récepteurs β-adrénergiques et améliore la fonction cardiaque. La surexpression de Epac1 spécifiquement dans le myocarde entraîne une hypertrophie des cardiomyocytes. Par ailleurs, la voie β-AR/Epac1 induit l’accumulation de protéines ubiquitinylées et provoque l’activation du processus d’autophagie in vitro et in vivo. L’autophagie protège des effets délétères de la voie β-adrénergique/Epac en participant à l’élimination des agrégats protéiques et en contrant les effets hypertrophiques de Epac1. Ces résultats ouvrent de nouvelles perspectives pour le traitement de l’hypertrophie et de l’insuffisance cardiaque. / Catecholamines regulate cardiac function by stimulating β-adrenergic receptors (β-AR), leading to cAMP production and activation of a multiplicity of signaling pathways. Epac proteins are exchange factors for small G proteins which are directly activated by cAMP. Given the importance of the β-adrenergic pathway in cardiac physiopathology, it becomes essential to characterize functions of Epac protein in myocardium. In a first part, this study shows that H-Ras and Rap2B GTPases are involved in Epac-induced neonatal rat cardiac myocytes hypertrophy. Epac induces activation of the PLC/IP3/Ca2+ pathway which is necessary for H-Ras activation. At the transcriptional level, Epac causes HDAC4 nuclear export leading to activation of a hypertrophic gene program. In a second part, this study reveals implication of Epac1 in cardiac hypertrophy in vivo. Deletion of Epac1 in mice protects from cardiac remodeling induced by chronic isoproterenol infusion and enhances cardiac function. Cardiac specific overexpression of Epac1 in mice induces cardiac myocytes hypertrophy. Interestingly, β-AR/Epac1 pathway triggers ubiquitinated proteins accumulation and activation of autophagy both in vitro and in vivo. By eliminating aggregates and by counteracting hypertrophic effects of Epac, autophagy protects from deleterious effects of the β-AR/Epac pathway. These results open news insights into the treatment of cardiac hypertrophy and heart failure.
19

Rôle des microARN dans la différenciation de l'épithélium respiratoire humain : caractérisation de miR-449 comme acteur central de la multiciliogenèse conservé chez les vertébrés / Role of microRNAs in human airway epithelium differentiation : characterization of miR-449 as a central player in multiciliogenesis conserved in vertebrates

Chevalier, Benoît 17 December 2013 (has links)
Chez les vertébrés, le battement coordonné des cils motiles présents par centaines à la surface apicale des cellules multiciliées (MCC) est requis pour propulser directionnellement les fluides biologiques à l’intérieur de certains organes (voies respiratoires, ventricules cérébraux, trompes utérines ou certaines structures embryonnaires). De nombreuses pathologies humaines sont associées à des défauts ciliaires ou à une perte des MCC (dyskinésies ciliaires, mucoviscidose, asthme,...). Dans ce contexte, mon travail de thèse a consisté à élucider les mécanismes complexes contrôlant la différenciation des MCC et donc la formation des cils motiles (multiciliogenèse). Par des approches de génomiques fonctionnelles à partir de deux modèles d’épithéliums multiciliés évolutivement éloignés (épithélium respiratoire humain et épiderme d’embryon de Xénope) nous avons identifié la famille des microARN (petits ARN non-codants régulateurs de l’expression génique) miR-449 comme majoritairement exprimée dans les MCC. Nous avons montré que miR-449 contrôle la multiciliogenèse i) en bloquant le cycle cellulaire, ii) en réprimant directement la voie de signalisation Notch et iii) en inhibant l’expression de la petite GTPase R-Ras. Enfin, nos travaux montrent que l’ensemble de ces mécanismes est conservé chez les vertébrés. En conclusion, miR-449 est un nouveau régulateur clé de la multiciliogenèse conservé au cours de l’évolution. Nos résultats pourraient ouvrir la voie à de nouvelles stratégies thérapeutiques utilisant des petits ARN régulateurs dans le traitement de certaines pathologies associées à des défauts ciliaires. / In vertebrates, the coordinated beating of hundreds of motile cilia present at the apical surface of multiciliated cells (MCC) is required for propel directionally flow of biological fluids inside some organs (airways, cerebral ventricles, fallopian tubes or some embryonic structures). Many human diseases are associated with ciliary defects or loss of MCC (ciliary dyskinesia, cystic fibrosis, asthma ...). In this context, my thesis has sought to elucidate the complex mechanisms that control the differentiation of MCC and thus the formation of motile cilia (multiciliogenesis). By functional genomic approaches from two evolutionarily distant models of multiciliated epithelia (human respiratory epithelium and epidermis of Xenopus embryo) we identified the miR-449 family of microRNAs (small non-coding RNAs regulating gene expression) as mainly expressed in MCC. Then, we showed that miR-449 controlled multiciliogenesis by i) blocking the cell cycle ii) directly suppressing the Notch pathway and iii) by inhibiting the expression of the small GTPase R-Ras. Finally, we have demonstrated that all these mechanisms were conserved in vertebrates. In conclusion, miR-449 is a new key and conserved regulator of multiciliogenesis. Our findings could pave the way for new therapeutic strategies using small regulatory RNAs in the treatment of several diseases associated with ciliary defects.
20

Complex interplay between RAS superfamily GTPases and tumour suppressor RASSF effectors

Singh, Swati 12 1900 (has links)
Les trois proto-oncogènes RAS, soit HRAS, KRAS et NRAS (H/K/NRAS), sont les gènes les plus fréquemment mutés dans les cancers humains. Les énormes défis liés au ciblage thérapeutique des RAS soulignent la nécessité d’approfondir notre compréhension de la biologie de ces protéines et de trouver des stratégies alternatives pour traiter les cancers qu’elles induisent. Les petites GTPases RAS sont des régulateurs fondamentaux du développement et se lient à des protéines effectrices distinctes pour transmettre des signaux afin de réguler diverses voies de signalisation intracellulaires. Les effecteurs de RAS sont définis par un domaine de liaison à RAS (RBD) qui reconnaît la conformation active de RAS liée au GTP et active les voies de signalisation en aval. Par exemple, les effecteurs RAF et PI3K régulent les voies de signalisation MAPK et PI3K-AKT, respectivement, pour contrôler la prolifération, la survie et la tumorigenése. Alors que RASSF5 dirige RAS vers la voie Hippo, suppresseur de tumeur, mais cela reste moins bien compris. Il est intéressant de noter que la famille des domaines d'association à RAS (RASSF) comprend 10 effecteurs RAS supposés en aval, chacun comprenant un RBD, mais seul le RASSF5 se lie à H/K/NRAS. Les RASSF sont des suppresseurs de tumeurs connus et comptent parmi les protéines les plus fréquemment régulées à la baisse dans les cancers. La superfamille des petites GTPases RAS compte chez l’humain environ 160 protéines regroupées en cinq sous-familles : RAS, RHO, RAN, RAB et ARF. Alors que H/K/NRAS sont les mieux caractérisées et ont été au centre de la recherche sur le cancer, les fonctions cellulaires, la régulation et les protéines effectrices de nombreuses autres GTPases de la superfamille RAS restent obscures. Ma recherche doctorale visait donc à étudier le rôle des effecteurs de RASSF en cartographiant les interactions de BRAF et de quatre protéines de RASSF avec 83 GTPases appartenant aux sous-familles RAS, RHO et ARF et à utiliser ces connaissances pour démêler l'interaction complexe entre les GTPases et les effecteurs. Nous avons abordé des questions clés sur la spécificité des RBD envers les GTPases et avons révélé et validé 39 interactions RASSF-GTPase. Nous avons constaté qu'alors que BRAF démontre une spécificité restreinte pour les H/K/NRAS classiques, RASSF fait preuve de plasticité dans ses interactions avec les GTPases. RASSF5 interagit avec 10 GTPases distinctes de la sous-famille RAS (H/K/NRAS, RAP2B/2C, RRAS1/2, MRAS et RIT1/2) qui favorisent la croissance. La présence d’un complexe RASSF5-GTPase à la membrane plasmique redistribue la protéine YAP dans le cytosol et active la signalisation Hippo. Nous avons également montré que l'interaction de RASSF5 avec les kinases MST est essentielle pour l'activation de la voie Hippo médiée par le complexe RASSF5-GTPase. Nous avons également révélé que RASSF3, RASSF4 et RASSF8 lient les GTPases de la sous-famille RAS inhibitrices de croissance. RASSF8 subit une séparation de type liquide-liquide et réside avec YAP dans des gouttelettes non-membranaires. De plus, l'expression des partenaires GTPase de RASSF8 redistribue les condensats de RASSF8 et YAP de grandes structures périnucléaires. YAP et la voie Hippo entraînent une résistance aux inhibiteurs de RAS dans les cancers induits par RAS. Ainsi, nos découvertes sur l'association de RASSF5 et RASSF8 avec la voie Hippo pourraient aider à élucider les liens manquants entre les signalisations RAS et Hippo. Nous avons également identifié RASSF3 comme le premier effecteur canonique de MIRO1/2, des GTPases mitochondriales essentielles pour le fonctionnement et l'homéostasie des mitochondries. L'interaction de RASSF3 avec MIRO dans les mitochondries entraîne un effondrement du réseau mitochondrial. Pour comprendre la dynamique du réseau des GTPases, nous développons un outil de GTPase piégée inductible par la rapamycine. Ainsi, le piège qui garde la GTPase surexprimée inactive peut être libérée et la GTPase activée de manière conditionnelle en utilisant le traitement à la rapamycine. Cet outil sera utile pour élucider le rôle précis de chaque GTPase dans la régulation des effecteurs en aval in cellulo. Par conséquent, cette étude révèle la nature complexe des interactions entre GTPases et effecteurs et met en lumière l'importance biologique des protéines RASSF. / The three RAS proto-oncogenes, namely HRAS, KRAS and NRAS (H/K/NRAS) are the most frequently mutated genes in human cancers. H/K/NRAS small GTPases are fundamental regulators of development and bind distinct effector proteins to transmit signals to diverse cellular pathways. RAS effectors are defined by a RAS-binding domain (RBD) which recognizes the GTP-bound activated conformation of RAS and activates downstream signalling pathways. For example, RAF and PI3K effectors regulate the MAPK and PI3K-AKT signalling pathways, respectively, to control proliferation, survival and tumorigenesis. Whereas RASSF5 directs RAS to the tumour suppressor Hippo pathway but this remains less understood. Interestingly, the RAS Association domain family (RASSF) comprises 10 purported downstream RAS effectors, each of which comprises an RBD, but only RASSF5 binds to H/K/NRAS. RASSF are known tumour suppressors and are among the most frequently downregulated proteins in cancers. There are approximately 160 proteins in the human RAS superfamily that are clustered into five subfamilies: RAS, RHO, RAN, RAB and ARF. While H/K/NRAS are the best-characterized and have been a principal focus of cancer research, cellular functions, regulation and effectors for many other GTPases of the RAS superfamily remain recondite. My doctoral research therefore aimed to investigate the role of RASSF effectors by mapping the interactions of BRAF and four RASSF proteins with 83 GTPases belonging to the RAS, RHO and ARF subfamilies and use this knowledge to unravel the complex interplay between GTPase and effectors. I uncovered 39 RASSF–GTPase interactions and addressed key questions on RBD specificity towards GTPases. I found that while BRAF demonstrates restricted specificity for classical H/K/NRAS, RASSF shows plasticity in its interaction with GTPases. RASSF5 interacts with 10 distinct growth-promoting GTPases of the RAS subfamily (H/K/NRAS, RAP2B/2C, RRAS1/2, MRAS and RIT1/2). RASSF5–GTPase complex at the plasma membrane redistributes YAP to the cytosol and activates Hippo signalling. I also showed that RASSF5 interaction with MST hippo kinases is essential for RASSF5–GTPase complex-mediated activation of the Hippo pathway. I further revealed that RASSF3, RASSF4 and RASSF8 bind distinct growth-inhibiting RAS subfamily GTPases. RASSF8 undergoes liquid-liquid phase separation and resides in membraneless, phase-separated YAP condensates. Further, the expression of GTPase partners of RASSF8 redistributes RASSF8 and YAP condensates to large peri-nuclear structures. These findings show several GTPase–RASSF complexes play a role in Hippo signalling which may serve as potential therapeutic targets for RAS- or YAP-driven cancers. I also identified RASSF3 as the first canonical effector of MIRO1/2, mitochondrial GTPases that are essential for mitochondrial functions and homeostasis. RASSF3 interaction with MIRO at the mitochondria results in a collapse of the mitochondrial network. To understand the dynamics of the GTPase network, I am further developing a rapamycin-inducible trapped GTPase (RITG) tool, wherein a GTPase can be overexpressed while remaining occluded, and can be conditionally released or activated. This tool can be useful in elucidating the role of GTPases in the regulation of downstream effectors in cellulo. Overall, this study reveals the complex nature of GTPase–effector interactions and uncovers the biological significance of RASSF proteins.

Page generated in 0.1151 seconds