• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 85
  • 49
  • 43
  • 14
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 631
  • 631
  • 267
  • 193
  • 138
  • 66
  • 64
  • 59
  • 52
  • 48
  • 47
  • 46
  • 44
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Inflammation in Atherosclerosis

Jatta, Ken January 2006 (has links)
<p>Consequences of atherosclerosis may result in a number of diseases of the cardiovascular system that represent serious health problems and major causes of morbidity and mortality worldwide. Although it is initially considered as disease of fibro-lipid and thrombus deposition in the arterial wall, it also involves an ongoing inflammatory response.</p><p>Normally, the inflammatory response is considered as a protective defence mechanism of the body. However, if the inflammation gets out of proportion to the threat it is dealing with, it may then result in a sustained chronic disorder and thus may underlie the initial stage of atherogenesis. The work of this thesis focuses on the expression of cytokines/chemokines and the vascular transcriptional response to inflammation, i.e. LPS in atherosclerosis. This has mainly been studied in animal models of atherosclerosis; consequently, we set out to investigate these events using human material in vitro (human carotid lesions).</p><p>Employing quantitative analysis, we were able to detect a significant induction of protein and mRNA of the cytokines IL-1β, IL-6, IL-10 and TNF-α and the chemokines IL-8 and MCP-1 by LPS in both atherosclerotic and non-atherosclerotic vessels. In contrast, LPS induction of TNF-α, IL-1β and IL-10 was solely observed in the lesions, but not in normal arteries. In addition, the impact of IL-1 gene polymorphism on the risk of myocardial infarction (MI) was estimated by DNA genotyping of 387 survivors of a first MI and 387 sex and age-matched control subjects. We found no statistically significant differences in either genotypic distribution or allelic frequencies of IL-1β (-511) or IL-1Ra (VNTR) polymorphisms between first-time survivors of myocardial infarction and their age-matched healthy controls. Incontrast, our results demonstrated a strong association between the IL-1Ra genotype and severity of angiographically determined coronary artery disease in post-MI patients. To further investigate the vascular response to inflammation, we used gene array analysis to evaluate the human vascular transcriptional response to LPS of non-atherosclerotic human renal arteries compared to carotid lesions. In LPS treated renal arteries, 54% of the transcripts gave a detectable signal, where 4% were upregulated and 3.8% down-regulated. In the LPS stimulated carotid lesions, 44% of transcripts were detected. In this latter group, 5.1% of transcripts were increased and 3.3% decreased. Interestingly, a newly identified virus-inducible antiviral protein, CMV inducible gene <sub>5</sub>/viperin (Cig<sub>5</sub>), was among the most strongly induced gene in both normal and atherosclerotic biopsies. Single gene analysis revealed viperin in the endothelium of human atherosclerotic lesions. Further, viperin was induced in vascular cells by inflammatory stimuli and CMV infection.</p><p>In conclusion we show that atherosclerotic vessels produce more proinflammatory cytokines/chemokines than normal vessels. Interestingly, our results indicate that LPS enhances the expression of cytokines/chemokines in a similar pattern both in lesions and normal arteries. However, the response is stronger in atherosclerotic lesions. Furthermore, our results suggest that genetic polymorphisms within the IL-1Ra loci may influence the severity of CAD. Finally, the CMV inducible gene <sub>5</sub>/viperin have been identified as a putative culprit molecule in vascular inflammation and atherosclerosis.</p>
402

Enhanced methylglyoxal formation in cystathionine &gamma;-lyase knockout mice

Untereiner, Ashley Anne 24 June 2011
<p>Methylglyoxal (MG) is a reactive glucose metabolite and a known causative factor for hypertension and diabetes. Hydrogen sulfide (H<sub>2</sub>S), on the other hand, is a gasotransmitter with multifaceted physiological functions, including anti-oxidant and vasodilatory properties. The present study demonstrates that MG and H<sub>2</sub>S can interact with and modulate each other's functions. Upon <i>in vitro</i> incubations, we found that MG and H<sub>2</sub>S can directly interact to form three possible MG-H<sub>2</sub>S adducts. Furthermore, the endogenous production level of MG or H<sub>2</sub>S was significantly reduced in a concentration-dependent manner in rat vascular smooth muscle cells (A-10 cells) treated with NaHS, a H<sub>2</sub>S donor, or MG, respectively. Indeed, MG-treated A-10 cells exhibited a concentration-dependent down-regulation of the protein and activity level of cystathionine &gamma;-lyase (CSE), the main H<sub>2</sub>S-generating enzyme in the vasculature. Moreover, H<sub>2</sub>S can induce the inhibition of MG-generated ROS production in a concentration-dependent manner in A-10 cells. In 6-22 week-old CSE knockout male mice (CSE<sup>-/-</sup>), mice with lower levels of vascular H<sub>2</sub>S, we observed a significant elevation in MG levels in both plasma and renal extracts. Renal triosephosphates were also significantly increased in the 6-22 week-old CSE<sup>-/-</sup> mice. To identify the source of the elevated renal MG levels, we found that the activity of fructose-1,6-bisphosphatase (FBPase), the rate-limiting enzyme in gluconeogenesis, was significantly down-regulated, along with lower levels of its product (fructose-6-phosphate) and higher levels of its substrate (fructose-1,6-bisphosphate) in the kidney of 6-22 week-old CSE<sup>-/-</sup> mice. We have also observed lower levels of the gluconeogenic regulator, peroxisome proliferator-activated receptor-&gamma; coactivator (PGC)-1&alpha;, and its down-stream targets, FBPase-1 and -2, phosphoenolpyruvate carboxykinase (PEPCK), and estrogen-related receptor (ERR)&alpha; mRNA expression levels in renal extracts from 6-22 week-old CSE<sup>-/-</sup> mice. Likewise, FBPase-1 and -2 mRNA levels were also significantly down-regulated in aorta tissues from 14-16 week-old CSE<sup>-/-</sup> mice. Administration of 30 and 50 &#x00B5;M NaHS induced a significant increase in FBPase-1 and PGC-1&alpha; in rat A-10 cells. We have also observed a significant up-regulation of PEPCK and ERR&alpha; mRNA expression levels in 50 &#x00B5;M NaHS-treated A-10 cells, further confirming the involvement of H<sub>2</sub>S in regulating the rate of gluconeogenesis and MG formation. Overall, this unique study demonstrates the existence of a negative correlation between MG and H<sub>2</sub>S in the vasculature. Further elucidation of this cross-talk phenomenon between MG and H<sub>2</sub>S could lead to more elaborate and effective therapeutic regimens to combat metabolic syndrome and its related health complications.</p>
403

Enhanced methylglyoxal formation in cystathionine &gamma;-lyase knockout mice

Untereiner, Ashley Anne 24 June 2011 (has links)
<p>Methylglyoxal (MG) is a reactive glucose metabolite and a known causative factor for hypertension and diabetes. Hydrogen sulfide (H<sub>2</sub>S), on the other hand, is a gasotransmitter with multifaceted physiological functions, including anti-oxidant and vasodilatory properties. The present study demonstrates that MG and H<sub>2</sub>S can interact with and modulate each other's functions. Upon <i>in vitro</i> incubations, we found that MG and H<sub>2</sub>S can directly interact to form three possible MG-H<sub>2</sub>S adducts. Furthermore, the endogenous production level of MG or H<sub>2</sub>S was significantly reduced in a concentration-dependent manner in rat vascular smooth muscle cells (A-10 cells) treated with NaHS, a H<sub>2</sub>S donor, or MG, respectively. Indeed, MG-treated A-10 cells exhibited a concentration-dependent down-regulation of the protein and activity level of cystathionine &gamma;-lyase (CSE), the main H<sub>2</sub>S-generating enzyme in the vasculature. Moreover, H<sub>2</sub>S can induce the inhibition of MG-generated ROS production in a concentration-dependent manner in A-10 cells. In 6-22 week-old CSE knockout male mice (CSE<sup>-/-</sup>), mice with lower levels of vascular H<sub>2</sub>S, we observed a significant elevation in MG levels in both plasma and renal extracts. Renal triosephosphates were also significantly increased in the 6-22 week-old CSE<sup>-/-</sup> mice. To identify the source of the elevated renal MG levels, we found that the activity of fructose-1,6-bisphosphatase (FBPase), the rate-limiting enzyme in gluconeogenesis, was significantly down-regulated, along with lower levels of its product (fructose-6-phosphate) and higher levels of its substrate (fructose-1,6-bisphosphate) in the kidney of 6-22 week-old CSE<sup>-/-</sup> mice. We have also observed lower levels of the gluconeogenic regulator, peroxisome proliferator-activated receptor-&gamma; coactivator (PGC)-1&alpha;, and its down-stream targets, FBPase-1 and -2, phosphoenolpyruvate carboxykinase (PEPCK), and estrogen-related receptor (ERR)&alpha; mRNA expression levels in renal extracts from 6-22 week-old CSE<sup>-/-</sup> mice. Likewise, FBPase-1 and -2 mRNA levels were also significantly down-regulated in aorta tissues from 14-16 week-old CSE<sup>-/-</sup> mice. Administration of 30 and 50 &#x00B5;M NaHS induced a significant increase in FBPase-1 and PGC-1&alpha; in rat A-10 cells. We have also observed a significant up-regulation of PEPCK and ERR&alpha; mRNA expression levels in 50 &#x00B5;M NaHS-treated A-10 cells, further confirming the involvement of H<sub>2</sub>S in regulating the rate of gluconeogenesis and MG formation. Overall, this unique study demonstrates the existence of a negative correlation between MG and H<sub>2</sub>S in the vasculature. Further elucidation of this cross-talk phenomenon between MG and H<sub>2</sub>S could lead to more elaborate and effective therapeutic regimens to combat metabolic syndrome and its related health complications.</p>
404

In Vitro Model of Vascular Healing in the Presence of Biomaterials

Rose, Stacey Loren 16 November 2006 (has links)
Coronary artery stent placement has been a significant advance in the percutaneous treatment of atherosclerotic disease, and tissue engineered vascular grafts may provide a viable alternative to autologous segments for small diameter vessels. However, in-stent restenosis remains an important limitation, and tissue engineered grafts have poor patency and high risk of thrombus formation due to their inability to maintain a confluent, adherent, and quiescent endothelium. While animal models provide insight into the pathophysiology of these situations, elucidation of the relative importance of stent or graft components, hemodynamic factors, and molecular factors is difficult. Very little research has focused on bridging gaps in knowledge concerning blood/biomaterial interactions, blood/endothelial cell interactions, and endothelial cell/smooth muscle cell cross-talk. The work presented within this thesis will do just that. The objective of this thesis research was to elucidate the influence of biomaterial-induced activation of leukocytes on endothelial cell or smooth muscle cell phenotype, as well as endothelial cell/smooth muscle cell cross-talk in co-culture systems. Towards this goal, two complimentary in vitro endothelial cell/smooth muscle cell co-culture models with divergent smooth muscle cell phenotype were developed and characterized. Using these systems, it was found that the presence of more secretory smooth muscle cells (as would be seen in wound healing or disease) in general enhanced endothelial cell activation in response to biomaterial-pretreated monocytes, while the presence of less secretory smooth muscle cells (to model more quiescent smooth muscle cells found in uninjured healthy vessels) suppressed endothelial cell activation in response to biomaterial-pretreated monocytes (and neutrophils to a small degree). Additionally, biomaterial-pretreated monocytes and neutrophils amplified a smooth muscle cell phenotypic shift away from a more quiescent state. It is likely that the compounding effect of secretory smooth muscle cells and biomaterial-activated leukocytes are responsible for altered vascular wound healing upon implantation of stents or vascular grafts. Understanding the specific signals causing these effects, or signals delivered by contractile smooth muscle cells that limit these effects help to provide design criteria for development of devices or grafts capable of long term patency.
405

Nanopatterned Tubular Collagen Scaffolds For Vascular Tissue Engineering

Zorlutuna, Pinar 01 July 2009 (has links) (PDF)
One of the major causes of death in developed countries is cardiovascular disease that affects small and medium sized blood vessels. In most cases autologous grafts have to be used which have limited availability. A functional tissue engineered vessel can be the ultimate solution for vascular reconstruction. Tissue engineered constructs with cells growing in an organized manner have been shown to have improved mechanical properties. In the present study collagen scaffolds with 650 nm, 500 nm and 332.5 nm wide channels and ridges were seeded with human vascular smooth muscle cells (VSMC) and human endothelial cells seperately and then co-cultured on tubular scaffolds. When the films were seeded with endothelial cells it was observed that nanopatterns do not affect cell proliferation or initial cell alignment / however, they significantly influenced cell retention under shear (fluid flow). While 35 &plusmn / 10 % of the cells were retained on unpatterned films, 75 &plusmn / 4 % was retained on 332.5 nm patterned films and even higher, 91 &plusmn / 5 % was retained on 650 nm patterned films. It was shown that nanopatterns as small as 332.5 nm could align the vascular smooth muscle cells (VSMC) and that alignment significantly improved mechanical properties. Presence of nanopatterns increased the ultimate tensile strength (UTS) from 0.55 &plusmn / 0.11 on Day 0 to as much as 1.63 &plusmn / 0.46 MPa on Day 75, a value within the range of natural arteries and veins. Similarly, Young&amp / #8217 / s Modulus values were ca. 4 MPa, again in the range of the natural vessels. Since the films would be ultimately rolled into tubes of collagen, nutrient transfer through the films is quite crucial. Diffusion coefficient for 4-acetaminophenol and oxygen through the collagen films were found to be 1.86 &plusmn / 0.39 x 10-7 cm2.s-1 and 5.41 &plusmn / 2.14 x 10-7 cm2.s-1, repectively in the unseeded form, and increased by 4 fold after cell seeding, which is comparable to that in natural tissues. When both cell types were co-cultured on the nanopatterned tubes (a both-side nanopatterned collagen tube), it was shown that on the outside of the tube VSMCs proliferated in an oriented manner and on the inside endothelial cells proliferated as a monolayer. Therefore, this study showed that cell guidance enhances the mechanical properties of engineered vessels, and help overcome the two most important challenges in vascular tissue engineering / the need for adequate mechanical properties and continuous lining of endothelial cells even under physiological shear stress.
406

Computer controlled device to independently control flow waveform parameters during organ culture and biomechanical testing of mouse carotid arteries.

Gazes, Seth Brian 27 October 2009 (has links)
Understanding the mechanisms of cardiovascular disease progression is essential in developing novel therapies to combat this disease that contributes to 1 in 3 deaths in the United States every year. Endothelial dysfunction and its effects on vessel growth and remodeling are key factors in the progression and localization of atherosclerosis. Much of our understanding in this area has come from in-vivo and in-vitro experiments however perfused organ culture systems provide an alternative approach. Organ culture systems can provide a more controlled mechanical and biochemical environment compared to in-vivo models. This study focused on furthering development of this organ culture model by introducing a novel device to produce flow waveforms at the high frequencies and low mean flows seen in the mouse model. The device is capable of monitoring pressure, flow, diameter, and nitric oxide release. Each individual mechanism in the system was integrated via a computer using a custom Labview interface. The performance of the device was characterized by developing physiologic, physiologic-oscillatory, low, low-oscillatory waveforms and sinusoidal waveforms at frequencies ranging from 1-10 Hz. Overall this system provides a robust model to test the effects of flow on various biological markers both in real-time and after culture.
407

Regulation of coronary smooth muscle intracellular Ca²⁺ levels in porcine models of hyperlipidemia, diabetic dyslipidemia, and exercise training

Witczak, Carol A. January 2003 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 121-137).
408

Effects of endothelin-1 on coronary smooth muscle after chronic diabetes, atherogenic diet, and therapy

Lee, Dexter L. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 152-178). Also available on the Internet.
409

Effect of extracellular matrix and mechanical strain on airway smooth muscle

Pasternyk, Stephanie Marika, 1983- January 2009 (has links)
Airway remodeling in asthma includes alterations in extracellular matrix and airway smooth muscle (ASM) mass. For this study, ASM cells were obtained from rats that were challenged with ovalbumin (OVA) or saline (SAL) as control. OVA and SAL cells were seeded on plastic control (PC) or on plates coated with decorin or biglycan. OVA cell number was significantly increased versus SAL cells, for cells seeded on PC (48 h). A significant decrease in cell number was observed for both OVA and SAL cells seeded on decorin compared to PC cells (48 h). OVA cells, however, showed a more modest reduction in cell number. Furthermore, biglycan decreased SAL cell number only. Compared to no strain (NS), mechanical strain (S) reduced cell number for OVA and SAL cells on all matrices. In addition, S up-regulated expression of beta 1-integrin relative to NS controls. Results suggest an ability of ASM cells to be modulated by matrix and mechanical stimulation.
410

Role of chemokines in airway remodeling and effects on smooth muscle proliferation and survival

Al Abri, Jehan. January 2008 (has links)
The increase in ASMC mass is a major structural change described in airway remodeling in asthma. This increase has been attributed to ASMC hyperplasia and hypertrophy. The distance between ASMC and the epithelium is reduced suggesting expansion of the muscle bundle towards the epithelium. Recent studies have suggested a role of epithelial derived chemokines in ASMC migration toward the epithelium. We hypothesized that chemokines (Eotaxin, RANTES, MIP-1alpha and IL-8) can directly influence ASMC mass by increasing the rate of proliferation or enhancing survival. ASMCs were exposed to different concentrations of eotaxin, RANTES, IL-8 or MIP-1alpha. To test for proliferation, stimulated ASMC were pulsed with 3H-thymidine or stained with BrdU and then analyzed with flow cytometry. Apoptosis was measured using Annexin V and flow cytometry. Expression of phosphorylated p42/p44 and MAPKinases was assessed by Western analysis. In a concentration-dependent manner, chemokines such as Eotaxin, RANTES, IL-8 and MIP-lalpha increased ASMCs 3H-thymidine incorporation and DNA synthesis. Eotaxin, RANTES and IL-8 decreased the number of apoptotic ASMCs compared to the matched controls. A significant increase in phosphorylated p42/p44 MAPKs was seen after treating ASMCs with RANTES and eotaxin. We conclude that chemokines might contribute to airway remodeling by increasing the number of ASMCs.

Page generated in 0.037 seconds